UPPER DOLORES RIVER AND SILVER CREEK BASIN WATER QUALITY AND DISCHARGE **MONITORING SUMMARY** Rico, Colorado

SDMS Document ID

Prepared by:

ESA Consultants Inc.

215 West Mendenhall, Suite C-1 Bozeman, Montana 59715

Prepared for:

ARCO Environmental Remediation, L.L.C.

307 E. Park Street, Suite 400 Anaconda, Montana 59711

September 18, 2000

TABLE OF CONTENTS

1.0 I	troduction
2 2	Iethods and Procedures 3 1 Water Quality Sampling Procedures 3 2 Water Quality Analytical Procedures 3 3 Discharge Measurement Procedures 4
3	esults
TABLE	S
Table 1 Table 2 Table 3 Table 4 Table 5 Table 6	Sampling Location Summary1Analytical Procedures Summary4Silver Creek Basin Analysis Results6Upper Dolores River Analysis Results7St. Louis Settling Pond System Analysis Results8Discharge Measurement Results9
FIGURI	(follow page 10)
Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9	Silver Creek Basin Site Location Map St. Louis Settling Pond System Blaine Adit Discharge into Silver Creek (Site SC-2) St. Louis Tunnel Discharge at Adit (Site DR-3) St. Louis Settling Pond 18 Discharge (Site DR-4) Geothermal Springs Discharge to Dolores River (Site DR-8) St. Louis Tunnel Settling Pond System Outfall 002 (Site DR-6) St. Louis Tunnel Discharge at Adit (Site DR-3) - Discharge Measurement St. Louis Tunnel Overland Discharge to Pond 18 (Site DR-12) - Discharge Measurement St. Louis Tunnel Settling Pond System Outfall 002 (Site DR-6) - Discharge Measurement
APPEN	DICES

UPPER DOLORES RIVER AND SILVER CREEK BASIN WATER QUALITY AND DISCHARGE MONITORING SUMMARY RICO, COLORADO

1.0 Introduction

This report includes water quality sampling results and discharge measurement results from the Silver Creek and upper Dolores River basins near the Town of Rico, Colorado. Water Quality samples were collected on June 26 and 27, 2000, from the Blaine adit and St. Louis tunnel discharge, the St. Louis Pond Settling System, Silver Creek, and the Dolores River. Water flow measurements were performed at each sampling site in conjunction with the water quality sampling. Table 1 lists the sampling station locations and site descriptions. Sampling sites in the Silver Creek and Dolores River basins are illustrated on Figures 1 and 2, respectively.

TABLE 1
Sampling Location Summary

SITE ID	SITE DESCRIPTION
SC-1	Silver Creek immediately above Blaine adit discharge
SC-2	Blaine adit discharge immediately prior to entering Silver Creek (Outfall 001)
SC-3	Silver Creek below Blaine adit discharge (VCUP site SVS-5)
DR-I	Dolores River above St. Louis settling pond system
DR-2	Dolores River immediately above St. Louis settling pond system outfall
DR-3	St. Louis tunnel discharge at adit
DR-4 ⁽¹⁾	St. Louis settling pond system at Pond 18 discharge
DR-5	St. Louis settling pond system at Pond 11 discharge
DR-6	St. Louis settling pond system outfall to the Dolores River (Outfall 002)
DR-7	Dolores River below St. Louis settling pond system outfall
DR-8	Geothermal Springs discharge to Dolores River (Pond 5)
DR-9	St. Louis settling pond system at Pond 13 discharge
DR-10 ⁽²⁾	St. Louis settling pond system at Pond 14 discharge
DR-11 ⁽²⁾	St. Louis tunnel discharge to Pond 13 (conveyed via underground culvert)
DR-12 ⁽²⁾	St. Louis tunnel overland discharge to Pond 18
DR-13 ⁽²⁾	St. Louis tunnel channel discharge to Pond 18

- (1) Water Quality Sample only at this site.
- (2) Discharge measurement only at this site.

The sampling and discharge measurement locations and parameters for analysis were selected to provide data on the Blaine adit discharge, St. Louis tunnel settling pond system, and the associated water quality and flows of Silver Creek and the Dolores River for the spring runoff season. The spring runoff flow conditions are expected to be relatively high in comparison to flows during the rest of the year. The data objectives included:

- Characterizing the water quality of the selected adit drainages and receiving streams for comparison with (1) CDPS Permit Number CO-0029793, expired January 31, 1999, effluent limitations and (2) water quality results from the October, 1999 sampling event.
- Analysis of flow data in the St. Louis Pond Settling System for estimating flows intoand out of the system.
- Sampling and flow measurements were taken in June with the objective of obtaining data during a high runoff period. Note that the flow measurements performed at Silver Creek (SC-1 and SC-3) and at the Dolores River (DR-1, DR-2, and DR-7) were not proposed in the scope of work but were added due to low flows in the Dolores River, time availability, and significance of the data.

Several field conditions warrant discussion in relation to meeting the third objective. Though the intent of this sampling event was to collect seasonal data for a relatively high flow period, this year's spring runoff may have been lower and peaked sooner than other years. Several changes were made to the sampling effort. Though flows may have been lower than normal, information is still useful to assess seasonal conditions.

Water samples were analyzed for pH, temperature, conductivity, alkalinity, hardness, total dissolved solids (TDS), and total suspended solids (TSS) plus the trace metals cadmium, copper, iron, lead, manganese, silver, and zinc. The selected analyses correspond to parameters listed in CDPS Permit Number CO-0029793, expired January 31, 1999.

All samples were analyzed for the dissolved fraction of the selected trace metals. The St. Louis tunnel discharge and settling pond system samples were analyzed for both dissolved and total recoverable trace metal concentrations.

Discharge measurements were performed at each water quality sampling location with the exception of Site DR-4 (St. Louis settling pond system at Pond 18 discharge). The Pond 18 discharge (Figure 5) could not be accurately measured with the available equipment and time. Additional discharge measurements were performed at sites DR-10, DR-11, DR-12, and DR-13 to provide data for the pond system flow analysis. Water quality samples were not collected at sites DR-10, DR-11, DR-12, and DR-13.

2.0 Methods and Procedures

2.1 Water Quality Sampling Procedures

Sampling was conducted in accordance with the sampling program used for the Rico site remediation. Lab-certified plastic bottles were used to collect sample water for hardness, TDS, and TSS analyses. Sample water for dissolved metals analysis was first collected in a clean plastic bottle, and within ten minutes, filtered through a 0.45µm filter into a sample bottle containing nitric acid preservative. Sample water for total recoverable metals analysis was collected without filtration in a sample bottle containing nitric acid preservative.

Field parameters were measured at the time of sample collection. Field measurement data for pH, temperature, conductivity, and alkalinity were recorded in a logbook and on sample collection forms. Field instruments were calibrated each morning using standard solutions and consistent with manufactures instructions. Copies of all field records are provided in Appendix A.

All sample bottles were labeled to identify sample number, date and time of collection, type of analysis, and appropriate preservative. In addition, sample analysis/chain of custody forms were completed and processed at the time of sample collection. Original chain of custody forms were signed, dated, and placed in the sample shipment container prior to sealing the container for shipment. Copies of all chain of custody information is provided in Appendix A.

2.2 Water Quality Analytical Procedures

All water samples were sent to Alpine Analytical Laboratory in Helena, Montana. Sample analyses were performed according to methods specified in 40 CFR, Part 136 or other methods approved by EPA. Laboratory methods and reporting limits for all parameters are presented in Table 2.

The full analytical report package (Appendix B) includes reference to the analytical methods used, detection limits, and quality control data. Quality control results indicate that the data are acceptable and usable. Results include near-detection level, but reportable, concentrations of total recoverable cadmium (0.13 μ g/L) and dissolved cadmium (0.14 μ g/L), copper (10 μ g/L), lead (0.60 μ g/L), and zinc (20 μ g/L) in the field blank (Appendix B). However, results from field duplicate samples are all within control limits (Appendix B3), and field data are supported by sufficient laboratory backup data and quality control results, to determine that the data are acceptable for the intended use.

TABLE 2

Analytical Procedures Summary

Parameter	Practical Quantitation Limit	Method
Field Parameters		
pH (s.u.)	`	EPA 150.1
Temperature (°C)		Standard Method 2550
Conductivity (µmhos/cm)		EPA 120.1
Alkalinity (mg/L as CaCO3)	5 mg/L	EPA 310.1
General Parameters		
Hardness (mg/L as CaCO ₃)	0.2 mg/L	EPA 6010/130.2
Total Dissolved Solids (mg/L as TDS)	1 mg/L	EPA 160.1
Total Suspended Solids (mg/L as TSS)	1 mg/L	EPA 160.2
Trace Metals		•
Cadmium (µg/L as Cd)	0.02 μg/L	EPA 7131
Copper (µg/L as Cu)	10 μg/L	EPA 6010
Iron (µg/L as Fe)	20 μg/L	EPA 7381
Lead (µg/L as Pb)	0.5 μg/L	EPA 7421
Manganese (µg/L as Mn)	5 μg/L	EPA 6010
Silver (µg/L as Ag)	0.02 μg/L	EPA 7761
Zinc (µg/L as Zn)	10 μg/L	EPA 6010

2.3 Discharge Measurement Procedures

Discharge measurements were conducted in accordance with the measurement procedures used for the Rico site remediation as well as USGS standard discharge measurement procedures. Flows were measured by one of two methods (1) a Marsh-McBirney Model 2000 portable flow meter, or (2) volumetric procedure using a 5 gallon bucket. The volumetric procedure was used at the Blaine adit discharge (Site SC-2), the Geothermal springs (DR-8), the Pond 13 discharge (Site DR-9), and the Pond 13 influent from the St. Louis tunnel (Site DR-11). Volumetric field measurements consisted of three time/volume trials using a stopwatch and a five gallon bucket. The trials were averaged to determine the flow rate (in gallons per minute) at each station. The volume trials were recorded in a logbook. Copies of all field records are provided in Appendix A.

The six-tenths-depth method (for depths between 0.3 feet and 2.5 feet) was selected for the flow meter measurements. This method uses the velocity at six-tenths of the depth as the mean velocity in the vertical direction. This method is generally reliable between depths from 0.3 feet to 2.5 feet. The first step in the measurement procedure was selecting a stream section with the desired characteristics of: parallel flows, smooth streambed with minimal obstructions, a straight channel,

and a flat streambed. The best possible section was selected using these criteria. After selecting the stream section, a measuring tape was stretched across the stream section, perpendicular to the flow, and anchored at both ends. The width of the section was determined and divided into several (10 to 20) vertical sections. Flow measurements of velocity (by the six-tenths-depth method) and water depth were measured at each vertical section using the Marsh-McBirney flow meter and wading rod assembly. The flow meter was set to the 10 second fixed period average mode. Three velocity readings were recorded at each vertical section. Flows were calculated for each stream section using the water depth, horizontal distance, and averaged velocity data. The flow meter measurements were recorded in a logbook (Appendix A) and the discharges calculated on field data sheets (Appendix A).

3.0 Results

3.1 Water Quality Results

Silver Creek Basin. Analysis results from samples collected in the Silver Creek Basin on June 27, 2000, are provided in Table 3. For information purposes, Colorado stream standards for Silver Creek below the Town of Rico's water supply intake (Segment 9) are provided in Table 3. For hardness based standards, a hardness value of 90 mg/L as CaCO₃ was used to calculate standard values. This hardness value was measured in sample SC-3 collected from Silver Creek below the Blaine adit discharge.

At SC-2, flow from the Blaine adit was measured at 1.6 gallons per minute (Figure 3). The discharge was very acidic with a pH of 1.97 and contained high concentrations of total dissolved solids (7,089 mg/L) and dissolved metals (Table 3).

Comparison of the Silver Creek results at SC-3 with Silver Creek stream standards indicates that most concentrations of the measured dissolved trace metals are below applicable standard values. The only exception is dissolved copper. The measured concentration of dissolved copper (20 μ g/L) exceeds the acute and chronic standard values of 16.1μ g/L and 10.8 μ g/L, respectively. The PH value measured at SC-3 (6.32 s.u.) Is below the Silver Creek standard range for PH (6.5 - 9.0 s.u.).

Compared to the October 1999 sampling event, concentrations of dissolved trace metals are generally lower in Silver Creek and the Blaine adit discharge. However, concentrations of dissolved trace metals, including dissolved copper, at SC-3 are typically within the range of concentrations measured during VCUP monitoring. The measured pH values, both above and below the Blaine adit discharge, are lower than the values from the October 1999 sampling event and from the range of values during the VCUP monitoring.

TABLE 3
Silver Creek Basin Analysis Results

•			SC-1	SC-2	SC-3
Parameter	Units	Standard ⁽¹⁾	Silver Ck above Blaine Adit	Blaine Adit	Silver Ck below Blaine Adit
Field Parameters					
Flow	gpm		1163	1.6	1163
рН	s.u.	6.5 - 9.0	7.41	1.97	6.32
Temperature	°C		10.2	8.0	10.1
Conductivity	μmhos/cm		174.5	8720	185
Alkalinity	mg/L as CaCO ₃	<u> </u>	75	<10	78
General Parameters				· <u></u> .	
Hardness	mg/L as CaCO ₃		116	2,149	90
Total Dissolved Solids	mg/L as TDS		108	7089	127
Total Suspended Solids	mg/L as TSS		1.0	6.0	7.0
Dissolved Trace Metals			,		
Cadmium	μg/L as Cd	8.8/5.0	1.4	7,000	4.1
Copper	μg/L as Cu	16.1/10.8	10	5,200	20
Iron	μ g/L as Fe	/1,000	<20	844,000	60
Lead	μg/L as Pb	80.9/3.4	3.2	505	0.90
Manganese	μg/L as Mn	/1,000	9.6	149,000	230
Silver	μg/L as Ag	1.70/0.27	<0.02	1.4	< 0.02
Zinc	μg/L as Zn	/1,100	770	230,000	380

⁽¹⁾ acute/chronic - Colorado stream standards (dissolved metals) for Silver Creek below the Town of Rico's water supply intake (Segment 9). The hardness value measured at the downstream sampling site SC-3 (90 mg/L as CaCO₃) was used for hardness based standards.

Dolores River Basin. Samples from the Upper Dolores River Basin were collected on June 27, 2000. Results from Dolores River samples are presented in Table 4 with stream standards for Section 3. For hardness based standards, a hardness value of 148 mg/L as CaCO₃ was used to calculate standard values. This hardness value was measured in sample DR-7, the Dolores River below the St. Louis tunnel settling pond system.

Comparison of the results at DR-1, DR-2, and DR-7 with Dolores River stream standards indicates that the measured concentrations of dissolved metals typically are below standard values. The only exceptions are dissolved copper and zinc. The concentration of dissolved copper measured at DR-2 (30 μ g/L) is greater than the acute and chronic standard values of 25.7 μ g/L and 16.5 μ g/L, respectively. However, the dissolved copper measured downstream at DR-7 (<10 μ g/L) grab sample is below the acute and chronic standard values. The measured concentration of dissolved zinc at DR-7 (160 μ g/L) (grab sample) is higher than the chronic standard value of 148 μ g/L.

Concentrations of dissolved trace metals in the Dolores River are similar to concentrations measured during the October 1999 sampling event.

TABLE 4 **Upper Dolores River Analysis Results**

			DR-1	DR-2	DR-7
Parameter	Units	Standard (t)	Dolores River above Ponds	Dolores River above Outfall	Dolores River below Ponds
Field Parameters					
рН	s.u.	6.5 - 9.0	7.42	7.23	6.83
Temperature	℃		9.7	9.6	8.6
Conductivity	µmhos/cm	·	191	232.5	295.8
Alkalinity	mg/L as CaCO ₃		62	112_	62
General Parameters					
Hardness	mg/L as CaCO ₃		102	120_	148
Total Dissolved Solids	mg/L as TDS		146	178	188
Total Suspended Solids mg/L as TSS			1.0	1.0	<1.0
Dissolved Trace Metals					
Cadmium	μg/L as Cd	15.4/1.54	0.15	0.20	0.70
Copper	μg/L as Cu	25.7/16.5	<10	30	<10
Iron	μg/L as Fe	/1,000	<20	<20	<20
Lead	μg/L as Pb	180.5/6.8	<0.5	0.70	<0.5
Manganese	μg/L as Mn	/1,000	12	163	443
Silver	μg/L as Ag	4.0/0.63	<0.02	0.08	<0.02
Zinc	μg/L as Zn	163.1/147.8	20	<10	160

measured at the downstream sampling site DR-7 (148 mg/L as CaCO₃) was used for hardness based standards.

St. Louis Settling Pond System. Sample results from the St. Louis tunnel settling pond system are presented in Table 5. For purposes of comparison, the 30-day average effluent limitations for Outfall 002 (CDPS Permit Number CO-0029793, expired January 31, 1999) are presented in Table 5. Samples were collected at the St. Louis tunnel discharge at adit (Figure 4), Pond 18 discharge (Figure 5), Pond 13 discharge, Pond 11 discharge, Pond 5 Geothermal Spring (Figure 6), and Outfall 002 (Figure 7). The total recoverable trace metal results from Outfall 002 for cadmium and zinc exceed the 30-day average effluent limitation value. The total recoverable concentrations of cadmium and zinc in the Pond 18, Pond 13, Pond 11, and St. Louis tunnel discharges also exceed the effluent limitation values. Total recoverable concentrations of copper in the Pond 18 and St. Louis tunnel discharges are also greater than the effluent limitation value of 24 $\mu g/L$. Concentrations of measured total recoverable metals in samples collected from the Pond 5 Geothermal Spring are near or below the 30-day average effluent limitation value.

Compared to the October 1999 sampling event, concentrations of dissolved and total recoverable trace metals are generally lower throughout the St. Louis tunnel settling pond system. Copper concentrations at the tunnel discharge (DR-3) were the most notable exception. A total recoverable copper concentration of 300 μ g/L was measured at the tunnel discharge, but copper concentrations were not detected during the 1999 sampling event. Although measured values of pH and concentrations of hardness in the pond system are slightly lower than those measured in 1999, concentrations of alkalinity and total dissolved solids are similar to 1999 concentrations.

TABLE 5
St. Louis Tunnel Settling Pond System Analysis Results

			DR-3	DR-4	DR-5	DR-6	DR-8	DR-9
Parameter	Units	Effluent Lim. ⁽¹⁾	Tunnel Discharge	Pond 18 Discharge	Pond 11 Discharge	Outfall 002	Geo. Spring	Pond 13 Discharge
Field						_		
рН	s.u.	6.5 - 9.0	6.58	6.88	6.96	6.77	6.53	6.81
Temperature	°C		16.1	18.2	15.2	<u>15</u> .1	40.2	16.2
Conductivity	μmhos/cm		1,065	1,072	1,088	1,149	2846	1236
Alkalinity	mg/L as CaCO ₃		67	86	_66	107	1180	51_
General								
Hardness	mg/L as CaCO ₃		689	(2)	701	793	1189	733
TDS	mg/L as TDS		955	974	962	1070	1660	1155
TSS	mg/L as TSS		14	3.0	2.0	5.0	26	4.0
Dissolved Trac	e Metals							
Cadmium	μg/L as Cd		18	10	6.3	5.9	0.11	10
Copper	μg/L as Cu		30	<10	<10	<10	<10	<1 <u>0</u>
Iron	μg/L as Fe		350	<20	<20	<20	3,880	<20
Lead	μg/L as Pb		<0.5	<0.5	<0.5	<0.5	0.50	<0.5
Manganese	μg/L as Mn		2,660	2,650	2,550	1,970	1,200	4,840
Silver	μg/L as Ag		<0.02	< 0.02	0.05	0.05	< 0.02	0.06
Zinc	μg/L as Zn		3,600	2,620	1,790	1,410	90	1,970
Total Recover	able Trace							
Cadmium	μg/L as Cd	/0.4	15	14	6.8	8.6	0.13	12
Copper	μg/L as Cu	/24	100	40	<10	<10	<10	<10
Iron	μg/L as Fe		3,210	210	580	450	4,690	960
Lead	μg/L as Pb	19.9	1.6	0.80	<0.5	<0.5	0.60	<0.5
Manganese	μg/L as Mn		2730	2,700	2,670	2,070	1.220	5,160
Silver	μg/L as Ag	/0.1	<0.02	0.02	0.04	0.05	0.09	0.09
Zinc	μg/L as Zn	/237	3,670	2.780	2,170	1,530	270	2,420

⁽¹⁾ daily maximum/30-day average - St. Louis Tunnel Outfall 002 Effluent Limitations (CDPS Permit Number CO-0029793, expired January 31, 1999)

⁽²⁾ the DR-4 Hardness value reported from the analytical laboratory (Appendix B) was inconsistent with the hardness and TDS data set. Therefore, the value was not included in Table 5.

3.2 Discharge Measurement Results

Flow measurement results from the Silver Creek Basin, the Dolores River, and the St. Louis settling pond system conducted June 26 and 27, 2000 are provided in Table 6. The Sites are listed in order of upstream to downstream and include the measurement method used for each. In addition to Table 6, sampling sites in the Silver Creek and Dolores River basins are illustrated on Figures 1 and 2, respectively.

TABLE 6

Discharge Measurement Results

Site ID	Site Description	Measurement Method	Flow (cfs)	Flow (gpm)
Silver Creek	Basin			
SC-1	Silver Creek above Blaine adit discharge	Flow meter	2.59	1,163
SC-2	Blaine adit discharge (Outfall 001)	Bucket	0.003	1.6
SC-3	Silver Creek below Blaine adit discharge	Flow meter	2.59	1,163
Dolores Rive	er			
DR-1	Dolores River above St. Louis settling ponds	Flow meter	40.1	17,989
DR-2	Dolores River above settling pond Outfall 002	Flow meter	47.4	21,275
DR-7	Dolores River below settling pond Outfall 002	Flow meter	57.7	25,763
St. Louis Set	tling Pond System	_		
DR-3	St. Louis tunnel discharge at adit	Flow meter	1.46	655
DR-11	St. Louis tunnel discharge to Pond 13	Bucket	0.19	85
DR-12	St. Louis tunnel overland discharge to Pond 18	Flow meter	1.07	480
DR-13	St. Louis tunnel channel discharge to Pond 18	Flow meter	0.68	305
DR-9	Pond 13 Effluent	Bucket	0.03	12
DR-10	Pond 14 Effluent	Flow meter	1.06	476
DR-5	Pond 11 Effluent	Flow meter	1.08	485
DR-6	St. Louis settling pond system outfall (Outfall 002)	Flow meter	0.93	417
DR-8	Geothermal springs discharge to Dolores River	Bucket	0.03	11.9

Silver Creek Basin. Flow results in Silver Creek above and below the Blaine adit, SC-1 and SC-3 respectively, were both measured at 2.59 cfs on June 27, 2000. Due to the close proximity of these stations and the relatively low flow of the Blaine adit, the flow results raise confidence in the measurement equipment and techniques. The Blaine adit flow (Figure 3) of 1.56 gpm is slightly higher than the 1.4 gpm measurement of October 25, 1999. Although not significant, the slight increase in flow may be attributed to the spring runoff. Typically, the spring runoff peak flow for the Blaine adit lags the peak flow in the Dolores River by four to six weeks.

Dolores River Basin. USGS provisional data (subject to revision) indicate that the Dolores River flow near Rico peaked on May 24, 2000 at 730 cfs. The Dolores River flow measurement results (Table 6) indicate an increase in flow of approximately 17.6 cfs between DR-1 (40.1 cfs) and

DR-7 (57.7 cfs). Site DR-7 (57.7 cfs) was measured first beginning at approximately 9 am on June 27, 2000, followed by Site DR-2 (47.4 cfs) beginning at 9:45 am, and lastly DR-1 (40.1 cfs) was measured beginning at 10:40 am. The USGS Station (# 09165000), which is approximately 4 miles downstream of Rico, recorded 70 cfs during the period that DR-1, and DR-2 were measured. However, the USGS provisional gage data indicates a flow decrease close to the time DR-1 was being measured. Therefore, the river flows were likely decreasing as the flow measurements were conducted and contributed to the flow difference in the measurements. Other factors contributing the measured flow increase between DR-1 and DR-7 include: 1.5 to 2 cfs inflow from the St. Louis tunnel discharge, potential inflow from Aztec Gulch, potential groundwater inflow, and potential discharge measurement error.

St. Louis Settling Pond System. Flows in the St. Louis Settling Pond System were measured on June 26, 2000, beginning measurements at the downstream end and proceeding upstream to the St. Louis tunnel adit. Flows were measured at several locations.

Two Geothermal Springs were inspected during the site visit. The Geothermal Spring located in the north east corner of Pond 6 was essentially inactive and, upon visual observation, was not contributing flows to Pond 6. The other Geothermal Spring is located in the north west corner of Pond 5. The flows from this Geothermal Spring have been routed through a conduit to a Hot Tub located near the Dolores River (Figure 6). The flow from the spring was measured at approximately 12 gallons per minute.

Color Photo(s)

The following pages contain color that does not appear in the scanned images.

To view the actual images, please contact the Superfund Records Center at (303) 312-6473.

Figure 3. Blaine Adit Discharge into Silver Creek (Site SC-2). The discharge was measured at approximately 1.6 gallons per minute.

Figure 4. St. Louis tunnel Discharge at Adit (Site DR-3). Flow from the tunnel is conveyed to the Pond System via three separate routes.

Figure 5. St. Louis settling Pond 18 Discharge (Site DR-4). Two additional culverts and a rock overflow spillway have recently been installed at the Pond 18 discharge.

Figure 6. Geothermal Springs Discharge to Dolores River (Site DR-8). Flow has been routed from the Spring to a Hot Tub; from which it flows into the Dolores River.

Figure 7. St. Louis Tunnel Settling Pond System Outfall 002 (Site DR-6). Sampling location just below end of concrete channel.

Figure 8. St. Louis Tunnel Discharge at Adit (Site DR-3) - Discharge Measurement. Flow measured by Marsh-McBirney Model 2000 flow meter.

Figure 9. St. Louis Tunnel Overland Discharge to Pond 18 (Site DR-12) - Discharge Measurement. The Overland flow discharges into Pond 18.

Figure 10. St. Louis Tunnel Settling Pond System Outfall 002 (Site DR-6) - Discharge Measurement.

APPENDIX A

Field Records

APPENDIX A1

Field Notes

T 15 7/2 2000	V 40
JUNE 26, 2000	LINDS CONTRACT CONTRACT Shakes
5teve Story	DR-8 Samples - Geothermal Spring PH = 6,53@ 40,2°C
Bill Schenderlein	++
ST. Louis Ponds:	· cond = 2846, @ 36.6 °C
09.5.	1. AIK = 1180 mg/L as Ca CO3
Air temp 56: E - overcast	Samples = Tag#
Air temp 56: F - overcast	-Hard, TSSTDS: 105
	- Di'ss Metals: 104 - TR metals: 103
- Ezzpacod Calibration	- TR metals: 103
'	
py = 8.56cc 1 = 7.0	Note: Samples collected from
Quiller 2 = 10.0	conduit discharge @ HOT TUB.
	Condati alecharge Ce no 125.
	Gestlerand Spring 1 Flow meas second:
	Massianit Volume time
Tost up Butter 1 - pH = 7.04	3.7 gal 17.04 sec 12.1 4.1 15.36 sec
	3.1 901 15.36 546
	3,19-1 15.34 466
DR-6 5p)es:	3.3 9-1 16.56 sez
PH = 6.77 @ 15.1°C	
Cond : 1149 @ 45 @ 15°C	
Alk = 107 mg/L as Ca CO3	
50105	Gran
- 1 - 1 - T - 102	Co.
- Hard, TSS, TOS Tay # 102	
- Diss Metals (HNO3) Tag # 101 (Filterd)	<u> </u>
- 1R Metals (HNO3) 1-2 + 100	
Preservative	

W.	0.4	/3.7/	0.38,	0.30,	0.35
'''	011	1 5	-	,	

The second secon

•		
	1035 DR-6 (D. River Outla	*(1)
	Flow Measurement a	rlong 11, Readings taken every 4/10's
	concrete Lined Chan	meLi
S	Channel = 4 Wide	
•	Depth Dist Flow?	2. 16.10 sec. average, 3 readings
. ((f+) (f+) (f+/s)	per/5+a.
		. reasured from Lt to Rt as
<u> </u>	1. 0.4 0.1 0.66,00	.63, 0.69 facing upstream,
.1		and the contract of the contra
	2. 0.4 . 0.4 0.68, 0.6	68,0:64 _ 1130 @ STA. DR-5: Pond 11.
· - ····		
· 	3. 0.4 0.8 0.69,0.	70, 0.64
	4. 0,4 1.2 0.69, 0.6	63, 0. 68 : Cond = 1088 45 @ 15, 2°C
_		A1K= 66 mg/L as CaCo3.
	5. 0.4 6.6 0.75,0.	.72, 0.82 1 Samples ! Tag # Tag #
		- Hard, TDS, TSS (08)
	6.0.4 2.0 0.84,0	0.72, 0.79 Diss Motals 107
	7. 0.4 2.4 0.78,0	0.70, 0.73 [[[[]]]]
	and the second of the second o	والمسترين والمنافعين والمرازي والمسترين والمتناف فيستنصب والمنواج والمناف والمنافية والمنافية والمناف والمنافية
	8. 0.4 2.8 0.61,0	0.63, 0.65
	A series of the	الإنجاز والمنظمين المنظم المنظم المنظم والمنظم المنظم المنظم المنظم المنظم المنظم المنظم المنظم المنظم المنظم ا
	9, 0.4 3.2 0.37, 0	0.40,0.46
-		
	10. 0.4 3.6 0.38,0	0.34,0,34

<u>.</u>

1200 DR.S. Flow Measurement: Pord 11 discharge Depth Dist. Flow. (ft) (ft) (ft) -- Start-At---2, 0.2 1.1 10.0 3. 0.4 4.3 0.03, 0.03, 0,04 4. 0.45 4.5 0.42 0.39 0.42 5. 0.50 4.7 0.80, 0.82, 0.92,0% 6. 0.50 4.9 1.82, 1.83, 1.91, 7. 0.50 5.1 1.60, 1.57, 1.58 8. 0.55 5.3 1.72, 6.71, 1.78 9. 0,50 5.5 2.01, 6.97, 1.87 10. 0.45 5.7 (.35, (.34, 1.25 11. 0.45 5.9 0.98, 0.84, 0.87,0.86 12. 0.45 6.1 0.15, 0.15, 0.13

TO THE STATE OF TH
Channel width # 2.3'
1230 POND 13 Discharge - by
5 gal. bucket
Marriaget volume time
1 1 4.75 gal, 23.71
12 4.75 gcul. 24.21
1 43 4.75 gal 27.24
0.03 (cfs)
1 1740 Pr 1 13 1 decking a sampling 1
1240 Pond 13 discharge sampling:
PH = 6.81@ 16.2°C
1 Cond = 1236 us @ 15, 3-6
4115 = 51 mg/L as Cacoiz
Samples = Tag #
- Hard, TOS, TSS 111
- DISS Metals 110

POND 13 IN	FLOW (From	··· — .	<u></u>				,	1
				144	5 3TA	DR-3 ;	57.40	uis Tunn	1
:					disch	oree a	Adit:	4	
			· · · · · · · · · · · · · · · · · · ·	!		70	7		
- 941,	·				, 17 H =	659	@ 1/2.1	00	
ا م			- ;	•					j:
				1 . 1 :	COND	= 1000	(0)	calor	1
# <u> </u>	4.75.gul	23	¥		ALK	= 6,T,x	ug/L as	muz	
					. Samp	oles:	7	AG #	
					. Har	d, T\$5,	755	117	
									; ; ;
:	:			-			•		2
STA DR-A	n	İ	–				1		e de la companya de l
· · · · · · · · · · · · · · · · · · ·	i Jamp b	19,				00.7	و مداحة		
- rond to	Pischar	بهو		_X.2]	10 7/A	· PK-5	- 770W		en I=
				` ; '			! _		· :
· PH = 6,88	@ 18.	2,0							4
-COND = 1072	2 m5@;	18.29	<u> </u>	1	0.,	4.0	. 0	, :	
								-0.01, -0.0	1 1
· Samples =	:. :	Tag #						0.06,000)
- Hard, TDS,	T55	114	•				•		
						6.0		· .	
	· · · · · · · · · · · · · · · · · · ·	,,	+-	7	0.95	6.5	0.44	,0.48,0.4	9
	: ::	!	* * ******* *	8	0.95	7.0			
.	- 1	. į			_				
				. :		8.5	0.36,	0.35 . 0.35	_
: •		!			1.0	9.0			
				13	0.95		0.00	, 0.02, -0.0	*
				. 14 15		10.3		1 - 6-14 1	
	St. Louis ture - Measure 5 gal. 1: Measurement *1 *2 *3 *TA. DR-4 - POND 18 *PH= 6.88 *COND= 107; *AIK= 86, Samples= - Hard, TDS, - DISS Me - TR Met	5+. Louis tunnel): - Measured pipe 5 gal. bucket Measurement VOL *1 4.75 gul 4.75 gul 4.75 gul 5TA. DR-4 Samp 15 - POND 18 Dischar PH= 6,88@18.2 *COND= 1072 MS@ *AIK= 86 mg/L as *Samples= - Hard, TDS, TSS - DISS Metals - TR Metals	#1 4.75 gnd 23 #2 4.75 gnd 3.31 #3. 4.75 gnd 3.34 0.19 of STA. DR-4 Sampling: - POND 18 Discharge: PH= 6.88@ 18.2°C *COND= 1072 MS@ 18.2°C *AIX= 86 mg/L as CACO3 *Samples= Tag # - Hard, TDS, TSS 114 - DISS Metals 113 - TR Metals 112	5+. Louis tunnel): - Measured pipe by 5 gal. bucket Measurement VOL Time MI 4.75 gul 234 02 4.75 gul 3.34 0.19 of5 5TA. DR-4 Sampling: - POND 18 Discharge PH= 6.88@ 18.2°C COND= 1072 M5@ 18.2°C MIK= 86 mg/L as CACO3 Samples= Tag # - Hard, TDS, TSS 114 - DISS Metals 113 - TR Metals 112	5+. Louis temper): - Measured pipe by 5 gal. bucket Measurement VOL Time *1. 4.75 gul 239. *2. 4.75 gul 3.31 *3. 4.75 gul 3.34 0.19 of 5 5TA. DR-4 Sampling: - POND 18 Discharge *PH= 6.88@18.2°C. *LEOND= 1072 MS@18.2°C. *LEOND= 1072 MS@18.2°C. *LOND= 1072 MS@18.2°C. *AIK= 86 mg/L as CACO3 *Samples= Tag # 3 - Hard, TDS, TSS 114 - DISS Metals 113 - TR Metals 112 6 10	5t. Louis turnel): - Measured pipe by S gal. bucket Measurement VOL Time COND 41 475 gul 234 Alk 22 4.75 gul 3.34 Sampling: - POND 18 Discharge 1510 5TA STA. DR-4 Sampling: - POND 18 Discharge 1510 5TA ST. Lou PH= 6.88@18.2°C COND= 1072 MS@18.2°C MIK= 86 mg/L us CHCO3 Samples= - Hard, TDS, TSS 114 - DISS Metals 113 - TR Metals 113 - TR Metals 112 6 0.65 9 1.00 10 0.85 11 1.05 12 1.00 13 0.95 14 0.85	5t. Louis teamel): - Measured pipe by 5 gal. bucket Measurement VOL Time 475 gal. 234 415 gal. 331 415 gal. 331 415 gal. 331 4175 gal. 331 5 amples: - Hard, TDS, Metals - PH= 6,88@ 18.2°C - Louis Tanne - PH= 6,88 @ 18.2°C - Louis Tanne - PH= 6,58 - TR Metals - PH= 6,58 - TR Metals - TR Metals - Louis Tanne - PH= 6,58 - TR Metals - Louis Tanne - PH= 6,58 - TR Metals - Louis Tanne - PH= 6,58 - TR Metals - Louis Tanne - PH= 6,58 - TR Metals - Louis Tanne - PH= 6,58 - TR Metals - Louis Tanne - PH= 6,58 - TR Metals - Louis Tanne - PH= 6,58 - TR Metals - Louis Tanne - PH= 6,58 - TR Metals - Louis Tanne - PH= 6,58 - TR Metals - Louis Tanne - PH= 6,58 - TR Metals - Louis Tanne - PH= 6,58 - TR Metals - Louis Tanne - PH= 6,58 - TR Metals - Louis Tanne - PH= 6,58 - TR Metals - Louis Tanne - PH= 6,58 - TR Metals - PH= 6,58 - TR M	5+ Louis tumpel): - Measured pipe by - Measurement Vol Tima Measurement Vol Tima - COND = 1065 @ 16, 1 - COND = 1065 @ 19, 4 - Massurement Vol Tima - COND = 1065 @ 19, 4 - MK = 67 mg/L as a a a a a a a a a a a a a a a a a a	5t. Louis teemel): - Measured pipe by - Measured pipe by - GoND = 1065 @ 16,1°C Measurement VOL 7/ma - COND = 1065 @ 19,4°C - Mil 475 gul 23t

1545 Flow Measurement - Di	version
to POND 18 Via COI	the feature of the fe
channel + Ditch. =	i i i i i i i i i i i i i i i i i i i
from St. Louis Adit	the state of the s
Depth Dist Flow.	Pepth Dist Flow
0 6".50 0	67.50
6, 0.28 8" 63 -0.11,0.09;	7"56 2.61, 2.57, 2.55
2, 0.3 10" 83 0.22, 0.13,	0.23, 0.12, 0.25 1 2 0.3 8" 17 3.07, 3.07, 3.11
3 0.3 12"100 0.70, 4.69,	3.84, 3.85, 3.42
4, 0.35 14" 117, 0.70,0.84	1,0.25 41 0.4 12" 13" 3.49 3.47
5, 0.35 16" 133 0.49 0.59,	, 0.66, 0.63 5. 0.35 14" 17 2.82, 2.31, 2.85
6. 0.4 1.18 5 0.84, 0.43,	, 0.77, 0.79, 0.72
7. 0.5 1 20"15" 1.36, 1.37,	1.50, 1.51, 1.51 1.35 18" 50 1.97, 2.03, 1.91
8. 0.6 22" 187 1.83, 1.71, 1	1.84
9. 0.5 24 203 1.49, 1.50, 1.	27" \ 0
10. 0.14 26" 7 1 0.78, 0.83,	
11. 0.35 28"15 0.35, 0.31,	
12. 0 33"25" 0	Outlet: Flows go overbank
	(not through culvert) - Visual
	estimate 15-20 gpm
· · · · · · · · · · · · · · · · · · ·	

Control of the second of the s

outflow

				-	-			
1715	PONI) 14	Prischarg	e Mea:	surc me	at_	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	- F10	W5 00	iec. the	top o	f			
	101	ice thr	ough a	cut	:			
		nnel:						
			. ,		,			
	Depth	Dist	Flow		<u>.</u>	_		
	. 0	. 4.0	0					للطبعات والتكلف بأبواء تا تتعلب أواف
L,	0.5°	4.2	9.69,0	72,0.68	į			
2.	. 0.7	. 4.4	1.62	59, 1.53				
· 3,	0.7	4.6	1.36,1	38 1.45	Ĺ.,.	- —		
4.	0.8	4.8	إهر 3م،	93, 6.97	. ' <u> </u>			,
5,	1 0.8	5.0	9.27, 0.	89,0.96,	0.88			
6.	0.8	\$.Z	٥ . 8 ه ه . ه	70, 0.70	: 			
7	0.7	5.4	0.53,00	56,0.57	N.	·		and the first time to be a second of the second
8.	0.7	5.6	0.48, 0	.480.4	د			
٩.	0.6	5.8	0.42,0	.40, 0.44				ulika sajah malamba <u>mba</u>
10.	0.6	6.0	: چ ر 39 ه	40, 0.4	ė .	-		
μ.	0.6	6.2	1 0,30,	,37, a.30) ;		<u> 11 </u>	
12.	0.55	6.4	0.18,0	.18, 0.17	;			
13_	. 0.45	. ط.ط	أرطاءها	0.15, 0.1	3	<u>-</u> .	والمراجع المرجع	
14.	. 0.4	:. 6-8	1 0-11 , 1	0.14, 0.1	Ь			en de la companya de La companya de la co
15.		7.1		· · · · · · · · · · · · · · · · · · ·	<u> </u>			
				· 	<u> </u>			عادات والمستخبرة والمنشية
			ا	··				الماريخ الماريخين المنظمة السيارية المارسياليات الماريخ المارسين المنظمة السيارية المارسياليات
	1		·			: <u>-</u>		

S. Story	0855 Flow Massurement@ DR-7
B. Schanderlein	
	Denth Dist Flow
DOLORES RIVER SAMPLING AND	1. 0 5.8 0
FLOW MEASUREMENT,	2, 0.35 6.0 : 1.20 , 1.23 , 1.22
	3.0.45 8.5 1.84, 1.82, 1.81
825 PH Meter Calibration:	4. 0. 65 11.0 2.34, 2.33, 2.25
Buffer 1 = 7.0 !	5,0,60 13.5 1.56,1.61, 1.42,1.63
Buffer 2 = 10,0	6. 1,00 16,0 1.06, 1.10, 1.08
	7, 0,65, 18.5, 2.16, 2.16, 2.35,2.1
STD. 1 = 7.04	8. 0.80 21.0 1.90, 1.94, 1.86
STD. 2 = 10.10	9. 0.70 23.5 1.43, 1.45, 1.52, 1.9
	10, 1,05 26.0 1.57, 1.62, 1.53
Test w/ Buffer 1 : PH = 7.04	11. 0.95 28.5 1.40, 1.38, 1.38
	112.0,95 31.0 2.42, 2.82, 2.67, 2.6
825 STA. DR-7: Dolores R. below	13, 1.60 33.5 2.55, 2.65, 2.76, 2.69
51. Louis Pond system outfall	14, 1, 75 36.0 2.24, 2.36, 2.34, 2.25
	15, 0 37.1 0
PH = 4,83 @ 8,6°C	tle.
COND= 295, 8,5@ 8,9°C	
AIK = 62 mg/L as CaCO3	* Measured Left to Right as
Samples: Tag#	facing upstream (same method
- Hard, TDS, TSS 118	as yesterday)
- DISS METALS	- 1125 Checked PH & COND@ DR-7
- Dup (Hard, T.DS, TES) , 20	PH= 7.16
- DuP(DISS Metals) 121	COND= 287 @ 10.7°C

1925 i	STA. DR-2 =	Dolores	R. above	0845 Flow Measurement @ DR-2
.0120	POND Syste		t t	The state of the s
				Depth Dist Flow
:	·PH = 7.23	@ 9.6	: محر	5.5
	COND= 282,5			2 440.7 8-06.5.0.34,0.41,0.38
	· AIK= 112 m	, –	·	3 1.4 9.0 0.0, -0.09, -0.08
		17	T-9 #	· · · · · · · · · · · · · · · · · · ·
	· Samples:		122	4 1.6 11.5 1.53, 1.71, 1.80, 1.83
	-Hard, TDS, T		123	5. 1.45. 14.0. 1.31, 1.45, 1.41
	- DISS Meta	72	12.5	6 1,25 16.5 0.71, 0.62, 0.57, 0.65
			110	7 1.60 19.0 1.65, 1.42, 1.77, 1.64
¥	NOTE: Samp			8, (.40 Z1.5, 1.74, 1.83, 1.69
	upstream appo	ox. 100	(trom	9. 1,55 24.0 1.42, 1.41, 1.42
	last Nov, Samp			10 1.60 26.5 1.64, 1.44, 1.52, 1.57
	streamflow n	neasure	ments	11 1.45 29.0 1.06, 1.08, 1.14
	1		i	12 1.20 31.5 0.94, 0.76, 0.96, 0.97
	-		i	13 (.10 34,0,0.54,0.51,0.53)
	-		!	14. 0.50 36.5 0.65, 0.64, 0.63
			i	15. 0 38 0
	<u>.</u>		;	to the graph of the control of the c
		· · ·		
				-
			.,	
				- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1015	STA. DR-1: Dolores	R. above	- 1040 Flow Messurements @ DR-1
	Pond system:	<u> </u>	Depth DIST Flow
			1, Depth DIST Flow
	· PH = 7.42@ 9.7	z°C	2 0.45 7.0 1.73, 1.71, 1.86
	· COND = 191 MS (3 1.00 9,5 1,15, 1.24, 1.28, 1.21
	· AIK = 62 mg/L a		4 1,25 12.0 2.24, 2.29, 2.33
	· Samples=		- 5 1.25 14.5 0.68,0.64,0.80,0.75
	- Hard, TDS, TSS	1	
.	•	<u> </u>	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	- DISS_Metals		7. I.30 19,5 1.64, 1.64, 1.67
	; _ = m = n =	•	0 1.55 22.0 1.42,1.56,1.52
			9 1,65 24.5 1.03, 1.10, 0.96
	.		_ 10. 1.40 27.0 1.11, 1.07, 1.13
	1		- 11 0.40 29.5 1.16, 1.28, 1.11, 1.17
			_ 12 0.65 32.0 0.83,0.88,0.87
			13 0.20 33.50.68,0.70,0.63
		_:	14 0 34.2 0
* 1 *			
	i i		
	· · · · · · · · · · · · · · · · · · ·		

-45

一日 発表

12

The state of the s

10	SILVER CREE	K/BLAIN	EADIT	13:00 /2/00 Language C 56-3;
	SAMPLING +	1 !		17 Ocoth 0. it a 1510
	1			5.7
	1240 STA.	36-3	Silver Cree	K: , .2. 0.3 · 6.5 0.22, 0.27, 0.18
	below Bl	aine Ad,	't discharge	C.13 1 . 0.4 : 20 . 0.35, 0.32, 0.35
	;	t	ļ	4. 1.0.4 7.5 0.33, 0.97, 0.87, 0.85
	* BLANI		•	5.45 8.0 1.27, 1.24, 3.27
	,	T. P.S. TSS	į.	6. 10.5 8.5 0.60, 8.67, 0.62
	*	Metals:	127	
	- TR	Metals:	12-8	3. 0.45 9.5 0.53, 0.55, 0.53
		: i.]	9.1
		•	(0.19	
	· · · · · · · · · · · · · · · · · · ·		@ 10.4%	
			L as CaCo3	
	Sample	5:	746#	_ 1
	- HAKO,	705,755	129	14. 0.45 12.5. 0.21, 0.27, 0.23
·	- V(3 <u>></u>	retais	/30	i de la companya de
		. :	:	16. 0.3 13.5 0.59, 0.61, 0.56
	: * PU 71.		7-1910	17. 0.2 14.0 0.40, 0.41, 0.40
	MIN OW	41 Du Fac	-7= 6.96@1	i i i i i i i i i i i i i i i i i i i
	•			19. 0.1 15.0 0.10, 0.10, 0.11
		j		70. 0 15.63.
	;	Production of the	· ·-· ·	
	•	:		Looking upstream mensurements.
			:	went Rito L.

The second secon

5

The state of

13:3		manders.	1 56-1	
	Dearl_	0,174-10	<u> </u>	_
1	•	4.9		_
			-0.40, 0.34	
			,	•
			o.18, e.17, a	
			0.22, 0.11, 0	
L		7.5	0,80,0.39.,	0.59,0.58
<u>7.</u>	0.9	8.	0.63 , 0.13 ,	0,49
4	. 09	g.5 :	1.08, 0.99	1.08
			1.62, 1.58,	
<u>) •</u> ,	 7	9.5	1.03, 1.01,	1.15, 1.04
			0.11,0.07,	
			- 0.16, -0. 17,	
1.3	<u> </u>	<u>: 16.6 , </u>		0,-0.20
4	<u></u>	<u> </u>	5.81. _j _9. 9 .b	,_0. <u>71</u>
			0.67, 0.63	
				ļ . .
1350	STA.	50-1:	Sliver Creck	ś
	above	Blaine Ac	lit Discharg	pe ;
	<u> </u>	7.41 e.	0. Z °C	[
			5@10,50	
		·		i i
		=		<u>> #</u>
•		165: RD, TDS, TS		ı
	- D	iss Metals	(32	2

1.00

1405 5TA SC-2:	Blaine Adit
1405 STA, SC-2: discharge inmed	Water, peroc to
entering 5 / lver C	reeki
: PH = 1.97 @ : COND= 8720;	60 8 40
ALK = N/A	
: Samples:	TAGTT
- HARD, TOS, TS	
- DISS META	
How measurement 6	3 SC-Z
y 5-7 ~/h = ~	brcket
de con t	4
3.0	154.09 1-1 1155.60 9-1 1558.27
3.0	1155,60
3.05	Sg million 1,558.27
	i i Garaga da
	V
	romania de la composición del composición de la

The state of the s

APPENDIX A2

Field Sampling and Stream Flow Measurement Forms

SURFACE WATER SAMPLING FORM

Station ID:	Feild Blant	<u> </u>	Project Name: RICO
Location: _		· · · · · · · · · · · · · · · · · · ·	·
Date: <u>6</u>	/27/00	Time:	2:40
Weather Co	onditions: P. Cloud	ly, Windy	, warm (70°F)
Sampling P	ersonnel (Signature):	Jetyla &	Home
	• • /	TELD MEAS	,
pH/Temp:		Dissolved O	exygen/Temp (mg/L):
Specific Co	onductance/Temp (µS/c	m):	
Fe (II) (mg	/L):	<u>.</u>	Fe (total)(mg/L):
Alkalinity (mg/L as CaCO ₃):		Calculated Streamflow (cfs):
COMMEN	TS:	- · · · · · · · · · · · · · · · · · · ·	
	WA	ATER QUALI	TY SAMPLES
Tag No.	Date/Time	Preserved	Analysis
126	6/27 12:40		Hand TOS TSS
127 128	6/27 12:40	HN03 HNO3	Hand TOS, TSS Diss. metals (Cd, (u, Fe, Pb, Ma, Aq, Za) TR metals ""
	-		
Site Sketch:	•		

SURFACE WATER SAMPLING FORM

Location: Silver Creek above Blane Tunnel drainage Date: 6/27/00 Time: 13:50 Weather Conditions: P. Cleudy , Windy , Warm (70°F) Sampling Personnel (Signature): FIELD MEASUREMENTS pH/Temp: 7.41@ 10.2°C Dissolved Oxygen/Temp (mg/L): Specific Conductance/Temp (µS/cm): 174.5 compensated to 25°C Fe (II) (mg/L): Fe (total)(mg/L): Fe (total)(mg/L): Alkalinity (mg/L as CaCO ₃): 25 Calculated Streamflow (cfs): COMMENTS: WATER QUALITY SAMPLES Tag No. Date/Time Preserved Analysis 131 6/27 13:50 HNO3 Diss. metals (Ca/Cu, Fe, Pb, 17a, A2, 2-, 2-, 2-) Circ Circle.	Station ID:	SC-1		Project Name:	110	
Weather Conditions: P. Cloudy Windy, Warm (70°F) Sampling Personnel (Signature): FIELD MEASUREMENTS pH/Temp: 741@ 10.2°C Dissolved Oxygen/Temp (mg/L): Specific Conductance/Temp (\(\mu S/cm\)): \(\frac{174.5}{25.6} \) Cempensated to \(25.6 \) C Fe (II) (mg/L): \(\frac{15.5}{25.6} \) Fe (total)(mg/L): \(\frac{15.5}{25.6} \) Calculated Streamflow (cfs): \(\frac{13.50}{25.6} \) Hard, \(\frac{10.5}{25.6} \) Tag No. \(\frac{13.50}{25.6} \) Hard, \(\frac{10.5}{25.6} \) Hard, \	Location: Silver Creek above Blame Tunnel drainage					
Sampling Personnel (Signature): FIELD MEASUREMENTS pH/Temp: 7.41@ 10.2 °C Dissolved Oxygen/Temp (mg/L): Specific Conductance/Temp (μS/cm): 174. S compensated to 25 °C Fe (II) (mg/L): Fe (total)(mg/L): Alkalinity (mg/L as CaCO ₃): 75 Calculated Streamflow (cfs): COMMENTS: WATER QUALITY SAMPLES Tag No. Date/Time Preserved Analysis 131 6/27 13:50 HNO3 Diss. models (Calculate, Pb, Na, Az, Zz, Zz, Zz, Zz, Zz, Zz, Zz, Zz, Zz, Z	Date: _6/	127/00	Time:/3	3:50		
FIELD MEASUREMENTS pH/Temp: 7.41@ 10.2°C Dissolved Oxygen/Temp (mg/L): Specific Conductance/Temp (\(\mu \)S/cm): \(\frac{174.5}{25.5} \) \(\component \) \(•			
pH/Temp: 7.41@ 10.2°C Dissolved Oxygen/Temp (mg/L): Specific Conductance/Temp (\(\mu\)S/cm): \(\frac{174.5}{27.5} \) \(\componsaded \) \(\frac{10.2°C}{25.5} \) \(\componsaded \) \(\componsaded \) \(\frac{10.2°C}{25.5} \) \(\componsaded \) \(\com	Sampling P	ersonnel (Signature):	Just 8	- June -		
Specific Conductance/Temp (µS/cm):		F	TELD MEAS	UREMENTS	**1	
Fe (II) (mg/L): Fe (total)(mg/L):	pH/Temp:	7.41@ 10.2°C	Dissolved O	xygen/Temp (mg/L):		
Alkalinity (mg/L as CaCO ₃):	Specific Co	nductance/Temp (μS/c	m): <u>/74.</u>	5 compensated to 2	?5°C	
COMMENTS:	Fe (II) (mg.	/L):		Fe (total)(mg/L):		
WATER QUALITY SAMPLES Tag No. Date/Time Preserved Analysis 13 6/27 13:50 — Hand TDS, TSS 132 6/27 13:50 HNO3 Diss. metals (Cd, Cu, Fe, Pb, Mn, A2, En, Ph, Mn, Ph, Ph, Mn, Ph, Ph, Ph, Ph, Ph, Ph, Ph, Ph, Ph, Ph	Alkalinity (mg/L as CaCO ₃):	25	Calculated Streamflow (cfs)		
Tag No. Date/Time Preserved Analysis 131	COMMEN	rs:	 	 		
131 6/27 13:50 — Hard TDS, TSS 132 6/27 13:50 HNO3 Diss. metals (Cd,Cu, Fe, Pb, Mn, Ag, En,		WA	TER QUALI	TY SAMPLES		
	Tag No.	Date/Time	Preserved	Analysis		
	131	6/27 13:50		Hard TOS, TSS	,	
		6/27 13:50	<u> </u>	Diss. metals (Ld.Lu.	Fe, Pb, Mn, Ag, En,	
C'a Chatala						
C'in Chatab.						
	Site Sketch:					

SURFACE WATER SAMPLING FORM

Station ID:	SC-2		Project Name:
Location:	Blaine Tunn	el drain	age
Date: _6/	127/00	Time:	4:05
Weather Co	onditions: P. Cla	udy, Wins	by, Warm (700F)
Sampling P	ersonnel (Signature):	100	28.
		TELD MEAS	()
pH/Temp:	1.97@8°C	Dissolved O	xygen/Temp (mg/L):
Specific Co.	nductance/Temp (µS/c	m): <u>872</u> 0	Compensated to 25°C
Fe (II) (mg/	/L):		Fe (total)(mg/L):
Alkalinity (mg/L as CaCO ₃):	IA	Calculated Streamflow (cfs):
COMMENT	гs:		
	WA	TER QUALI	TY SAMPLES
Tag No.	Date/Time	Preserved	Analysis
<u> 133</u>	6/27 14:05		Hard TDS, TSS Diss. metals (Cd, Cu, Fe, Ph, Ma, Aq, Za)
	6/27 14:05	HNO3	Piss. metals (Cd, Cu, Fe, Ph, Mn, Ag, Fin,
Site Sketch:			

Station ID:	<u>SC-3</u>		Project Name:
Location:	Silver Creek be	low Blaine	e Tunnel drainage
Date: <u>6/</u>	27/00	Time: _ <i></i>	2:40
		•	Ly, Warm (70°F)
Sampling P	ersonnel (Signature):	FIELD MEAS	()
pH/Temp:	6.32 € 10.1°C	Dissolved O	xygen/Temp (mg/L):
Specific Co	nductance/Temp (µS/c	cm): <u>185</u>	compersated to 25°C
Fe (II) (mg/	/L):		Fe (total)(mg/L):
Alkalinity (mg/L as CaCO ₃):	78	Calculated Streamflow (cfs):
COMMEN	rs:		
	W	ATER QUALI	TY SAMPLES
Tag No.	Date/Time	Preserved	Analysis
129	6/27 1240		Hard, TOS, TSS Diss metals (cd, Cu, Fe, Pb, Mn, Ay, Zr)
	6/21 17:40	<u>HN0.</u>	USS. Metals (Ed, Cu, te, P6, Mn, Ay, Er)
Site Sketch:			

Station ID:	DR-1		Project Name: RICO
Location: _	Dolores Rive	r above	St. Louis Pond system
Date: <u>6/</u>	27/2000	Time:/	0:15
Weather Co	nditions: Sunny	, Lt. bree	ze, warm (65°F)
Sampling Pe		TELD MEAS	UREMENTS
pH/Temp: .	7.42 @ 9.7°C	Dissolved O	xygen/Temp (mg/L):
Specific Cor	nductance/Temp (µS/c	m): <u>/9/</u>	compensated to 25°C
Fe (II) (mg/	L):		Fe (total)(mg/L):
Alkalinity (r	ng/L as CaCO ₃): <u>6</u>	2	Calculated Streamflow (cfs):
COMMENT	'S:		
	WA	TER QUALI	TY SAMPLES
Tag No.	Date/Time	Preserved	Analysis
/24 _/25_	6/27 10:15	HNOs	Hand TDS TSS Diss metals (Cd, Cu, Fe, Ph, Mn, Aq. 2n)
Site Sketch:			

Station ID: _	DR - 2		Project Name: RICO					
Location: D	olores River	upstream o	f St. Louis Pond system discharge 002					
Date: <u>6/</u>	27/00	Time:9	: 25					
	Weather Conditions: 5unm, Lt. breeze, cool (60°F) Sampling Personnel (Signature): FIELD MEASUREMENTS							
pH/Temp: <u>7</u>	23 € 9.6.0	Dissolved On	kygen/Temp (mg/L):					
Specific Cond	luctance/Temp (µS/ci	m): <u>232.5</u>	compensated to 25°C					
Fe (II) (mg/L):		Fe (total)(mg/L):					
Alkalinity (mg	g/L as CaCO ₃):/_	2	Calculated Streamflow (cfs):					
COMMENTS	:							
	WA	TER QUALIT	TY SAMPLES					
Tag No.	Date/Time	Preserved	Analysis					
			Hard, TOS, TSS Diss. medals (Cd, Cu, Fr, Ph, Mn, Ag, 2n)					
Site Sketch:								

Station ID: _	DR-3		Project Name: _	RICO
Location:	St. Louis Tunn	nel - disc	harge	
Date: _06/2	16/2000	Time:	4:45	
Weather Cond	ditions: Sunny	, (72 %)	
Sampling Per	sonnel (Signature): _	TELD MEASI		
pH/Temp: <u>6</u>	6.58 @ 16.1°C	Dissolved O	xygen/Temp (mg/L):	
Specific Cond	luctance/Temp (µS/ci	m): <u>/065</u>	compensated to	25°C
Fe (II) (mg/L):		Fe (total)(mg/L):	
Alkalinity (mg	g/L as CaCO ₃): <u>6</u>	7	Calculated Streamflow (cfs):
COMMENTS	:			
	WA	TER QUALI	TY SAMPLES	
Tag No.	Date/Time	Preserved	Analysis	
	6/26 14:45 6/26 14:45 6/26 14:45	HN03 HN03	TR metals (Cd.C Diss. metals Hard, TOS, TSS	u, Fe, Pb, Mr, Ag, Zr)
Site Sketch				

Station ID:	DR-4		Project Name: RICO	
Location:	St. Louis Pon	d 18 -	discharge	<u> </u>
Date: _O	6/26/2000	Time:	4:15	
Weather Co	onditions: <u>Sann</u>	$\gamma \rightarrow (7\overline{2})$	°F)	
Sampling I	Personnel (Signature):	TELD MEAS	()	
pH/Temp:	6.88@ 18.2°C	Dissolved O	xygen/Temp (mg/L):	
Specific Co	onductance/Temp (µS/c	m): <u>/072</u>	compensated to 25°C	
Fe (II) (mg	:/L):	 .	Fe (total)(mg/L):	
Alkalinity ((mg/L as CaCO ₃):	<u> 36</u>	Calculated Streamflow (cfs):	
COMMEN	TS:			
	WA	ATER QUALI	TY SAMPLES	
Tag No.	Date/Time	Preserved	Analysis	
112 113 114	6 <u>26 14:15</u> 6/26 14:15 6/26 14:15	<u>HNO3</u> HNO3	TR metals (d.(n. Fr. Ph. Mn.,) Diss. metals N Hard, TDS, TSS	49, 7.)
Site Sketch	:			

Station ID:	DR-5	·	Project Name:	RICO
Location: _	St. Louis Pon	d 11 disc	harge	
Date: <i>O&</i>	126/2000	Time://	30	
	ersonnel (Signature):			· · · · · · · · · · · · · · · · · · ·
pH/Temp:			xygen/Temp (mg/L):	
Specific Con	nductance/Temp (µS/c	cm): <u>/088</u>	compensated to	25 °C
Fe (II) (mg/	L):		Fe (total)(mg/L):	
Alkalinity (1	mg/L as CaCO ₃):	66	Calculated Streamflow	(cfs):
COMMENT	rs:			
	WA	ATER QUALI	TY SAMPLES	
Tag No.	Date/Time	Preserved	Analysis	
106 107 108	6/26 11:30 6/26 11:30 6/26 11:30	HN03 HN03	TRMetals (Cd.C Oiss. metals Hand, TSS, TOS	u, Fe, Pb, Ma, Aq, Zo,
Site Sketch:				

ESA CONSULTANTS INC.

2637 Midpoint Drive, Suite F Fort Collins, Colorado 80525 (970) 484-3611 (970) 484-4118 FAX

Station ID: DR-6		Project Name: Rico
Location: St. Louis Pone	1 Systen	1
Date: 06/26/2000	Time: <u>9</u>	:15
Weather Conditions: Overcas	st 156°	E)
Sampling Personnel (Signature): _	TELD MEAS	·
pH/Temp: 6.77 @15.1°C	Dissolved O	xygen/Temp (mg/L):
Specific Conductance/Temp (µS/c	m): <u>//49</u>	compensated to 25°C
Fe (II) (mg/L):		Fe (total)(mg/L):
Alkalinity (mg/L as CaCO ₃):/	07	Calculated Streamflow (cfs):
COMMENTS:	· · · · · ·	
WA	TER QUALI	TY SAMPLES
Tag No. Date/Time	Preserved	Analysis
100 6/26 9:15 101 6/26 9:15 102 6/26 9:15	HNO3 HNO3	TR metals ((d/u, Fe, Ph, Mu, Ag, Zu) Diss metals " Hard, TSS, TOS
Site Sketch:		

Station ID:	DR-7		Project Name: RICO
Location: _	below St.Lo	uis Pond	system outfall
Date: _6/	27/00	Time:	3:25
Weather Co	nditions: <u>P. Cland</u>	y, 6201	E. Lt. Breeze
Sampling Po	ersonnel (Signature):	The	8. S.
	1	FIELD MEASI	UREMENTS
pH/Temp:	6.83@ 8.6°C	Dissolved O	xygen/Temp (mg/L):
Specific Con	nductance/Temp (µS/c	em): <u>295.</u> 8	3 compensated to 25°C
Fe (II) (mg/	TL):		Fe (total)(mg/L):
Alkalinity (mg/L as CaCO ₃): <u>6</u>	32	Calculated Streamflow (cfs):
COMMENT	rs:		
	W	ATER QUALI	TY SAMPLES
Tag No.	Date/Time	Preserved	Analysis
118	6/27 8:25		Hand TOS TSS
	6/27 8:25	HNO3	Diss metals (ed, Cu. Fe, Pb, Mr, Aq, 2-
121	6/27 8:25	HNO3	Hand TDS TSS (Dup) Diss. metals (Cd, Cn, Fe, Pb, Mn, Aq, 7n) (Dup)
Site Sketch:			

Site Sketch:

Station ID:	DR - 8		Project Name:	RICO
Location: _	Geothermal	Spring		
Date:	6/26/2000	Time:	2:05	
Weather Co	onditions:	(65	°F)	
	ersonnel (Signature):			
		TIELD MEAS	/)	
pH/Temp:	6.53 @ 40.2°C	Dissolved O	xygen/Temp (mg/L):	<u></u>
Specific Co	onductance/Temp (µS/c	m): <u>2846</u>	compensated to	25 °C
	/L):		Fe (total)(mg/L):	
Alkalinity (mg/L as CaCO ₃): _//	80	Calculated Streamflow (
	TS:		-, · · · · ·	·
	WA	ATER QUALI	TY SAMPLES	·
Tag No.	Date/Time	Preserved	Analysis	
103	6/26 10:05	HNO3	TR metals (CAC)	. Fo, Ph, Mn, Az, Zn)
105	6/26 10:05	<u> </u>	Oiss metals Hard TSS TO	75
		·		
<u> </u>				
			-	

ESA CONSULTANTS INC.

2637 Midpoint Drive, Suite F Fort Collins, Colorado 80525 (970) 484-3611 (970) 484-4118 FAX

Station ID:	DR-9		Project Name:
Location:	St. Louis Pond	13 disch	arge
Date: _06	126/2000	Time: _/2	2:40
			<u> </u>
Sampling P	Personnel (Signature):	Ftyle (5.50
		TELD MEAS	
pH/Temp:	6.81 @ 16.2°C	Dissolved O	xygen/Temp (mg/L):
Specific Co	onductance/Temp (µS/c	m): <u>/236</u>	compensated to 25°C
Fe (II) (mg	/L):		Fe (total)(mg/L):
Alkalinity ((mg/L as CaCO ₃):	51	Calculated Streamflow (cfs):
COMMEN	TS:		
	WA	TER QUALI	TY SAMPLES
Tag No.	Date/Time	Preserved	Analysis
109	6 /26 12:40	HNO3	TR metals (Cd.Cn, Fe.Pb, Mn, Ag, In) Diss. metals "
	6/26 12:40	-	Hard, TOS, TSS
Site Sketch:			

		36-1		
Project l	Name: _	RICO		Date: $6/27/00$ Time: 133
Sampling	g Personn	el: (signature)	Start	8. 2
		ilver Creek	/)	Blaine adi't discharge
Vertical Number	Distance (ft/pr)	Depth (ft/m)	Velocity (ft/s,m/s)	Segment Flow (ft ³ /s, m ³ /s)
1	0.00		0.00	0.00
2	0.60	0.36	0.00	0.00
3	0.50	<i>6</i> .30	0.00	0.00
4	0.50	0.40	0.22	0.04
5	0.50	0.80	0.19	
6	050	0.70	0.69	0.24
7	050	090	0.62	0.28
8	0.50	0.90	1.05	0.47
9	0.50	0.90	1.62	0.73
10	050	0.70	1.06	0.37
11	0.50	0.90	0.08	0.04
12	050	0.80	0.00	0.00
13	050	0.50	0.00	0.00
14	0.50	0.60	0.83	0.25
15	050	0.30	0.62	0.09
16	050	0.00	0.00	0.00
17				
18				
19		<u>.</u>		
20				Total Flow: 2.59

St	tation Number:	<u> 50-3</u>			
Pı	roject Name: _	RICO	··	Date: <u>6/27/00</u>	Time: <u>/300</u>
Sa	ampling Person	nel: (signature) _	State 8		·
		ilver Creek		Braine adit dis	charge
Vertica Numbe			Velocity (ft/s_m/s)	Segment	Flow (ft ³ /s, m ³ /s)
•	; <u> </u>				
1	0.00	0.00	0.00		0.00_
2	0.80	0.30	0.21		0.05
3	0.50	0.40	0.34		0.07
4	0.50	0.40	0.88		0.18
5	0.50	0.45	1.26	7-12-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0.28
6	0.50	0.50	0.63		0.16
7		0.50	1.16		0.29
8	0.50	0.45	0.54		0.12
9	0.50	0.50	1.53		0.38
10	0.50	0.30	0.77		0.12
11	0.50	0.50	0.92		0.23
12	0.50	0.40	1.08		0.22
13	0.50	0.40	0.87		0.17
14	0.50	0.45	0.24		0.05
15	0.50	0.20	0.84		0.08
16	0.50	0.30	0.59		0.09
17	0.50	0.20	0.40		0.04
18	0.50	0.20	0.53		0.05
19	0.50	0.10	0.10		0.01
20	0.30	000	ላ ላለ		<u> </u>

Total Flow: 2.59 (cfs)

Project Name: RICO Date: 6/27/00 Time: 1040	Statio	on Number:	DR-1		
Description: Delores River Above St. Loui's settling fond System,	Proje	ect Name:	2160		Date: 6/27/00 Time: 1040
Description: Delores River Above St. Loui's settling fond System,	Samı	pling Personnel	: (signature) _	- Free Port	
Vertical Number Distance (ft/m) Depth (ft/m) Velocity (ft/s,m/s) Segment Flow (ft²/s, m²/s) 1. 0.00 0.00 0.00 2. 1.00 0.45 1.75 0.79 3. 2.50 1.00 1.22 3.05 4. 2.50 1.25 2.29 7.16 5. 2.50 1.25 0.72 2.25 6. 2.50 1.30 1.47 4.78 7. 2.50 1.30 1.47 4.78 8. 2.50 1.55 1.50 5.81 9. 2.50 1.65 1.23 4.25 10. 2.50 1.40 1.10 3.85 11. 2.50 0.40 1.18 1.18 12. 2.50 0.65 0.86 1.40 13. 1.50 0.20 0.67 0.00 16. 1.7 1.8 1.1 1.1 19. 1.1 0.00 0.00 </td <td></td> <td></td> <td></td> <td>/ / /</td> <td>2 St. Louis settling pond System,</td>				/ / /	2 St. Louis settling pond System,
Number (fum) (fum) (fus.mrs) Segment Flow (ft ³ /s, m ³ /s) 1.					
1. 0.00 0.00 0.00 2. 1.00 0.45 1.75 0.72 3. 2.50 1.00 1.21 3.05 4. 2.50 1.25 2.29 7.16 5. 2.50 1.25 0.72 2.25 6. 2.50 1.30 1.47 4.78 7. 2.50 1.30 1.65 5.36 8. 2.50 1.50 5.81 9. 2.50 1.65 1.03 4.25 10. 2.50 1.40 1.10 3.85 11. 2.50 0.40 1.18 1.18 12. 2.50 0.65 0.86 1.40 13. 1.50 0.20 0.67 0.20 14. 0.70 0.00 0.00 0.00 15. 0.00 0.00 0.00 0.00 16. 0.00 0.00 0.00 0.00 18. 0.00 0.00 <td></td> <td></td> <td></td> <td></td> <td>Segment Flow (ft³/s, pp³/s)</td>					Segment Flow (ft ³ /s, pp ³ /s)
2. $l.00$ 0.45 $l.75$ 0.79 3. 2.50 $l.00$ $l.21$ 3.05 4. 2.50 $l.25$ 2.29 7.16 5. 2.50 $l.25$ 0.72 2.25 6. 2.50 $l.30$ $l.47$ 4.78 7. 2.50 $l.30$ $l.47$ 4.78 8. 2.50 $l.55$ $l.50$ 5.36 8. 2.50 $l.65$ $l.50$ 5.81 9. 2.50 $l.65$ $l.03$ 4.25 10. 2.50 $l.40$ $l.10$ 3.85 11. 2.50 0.40 $l.18$ $l.18$ 12. 2.50 0.65 0.86 $l.40$ 13. $l.50$ 0.20 0.00 0.00 15. 0.70 0.00 0.00 0.00 16. 0.70 0.00 0.00 0.00 18. 0.00 0.00 0.00 0.00 19. <td></td> <td>(1921)</td> <td></td> <td>(10 0) 11 0)</td> <td>305</td>		(1921)		(10 0) 11 0)	305
3. 2.50 1.00 1.22 3.05 4. 2.50 1.25 2.29 7.16 5. 2.50 1.26 0.72 2.25 6. 2.50 1.30 1.47 4.78 7. 2.50 1.30 1.65 5.36 8. 2.50 1.55 1.50 5.81 9. 2.50 1.65 1.03 4.25 10. 2.50 1.40 1.10 3.85 11. 2.50 0.40 1.18 1.18 12. 2.50 0.65 0.86 1.40 13. 1.50 0.20 0.67 0.20 14. 0.70 0.00 0.00 0.00 15. 16. 1.18 1.18 19. 19. 19. 19. 19. 19.	1	0.00	0.00	0.00	0.00
4. 2.50 1.25 2.29 7.16 5. 2.50 1.25 0.72 2.25 6. 2.50 1.30 1.47 4.78 7. 2.50 1.30 1.65 5.36 8. 2.50 1.55 1.50 5.81 9. 2.50 1.65 1.03 4.25 10. 2.50 1.40 1.10 3.85 11. 2.50 0.40 1.18 1.18 12. 2.50 0.65 0.86 1.40 13. 1.50 0.20 0.67 0.20 14. 0.70 0.00 0.00 0.00 15. 16. 17. 18. 1.18 19. 19. 19. 19. 19. 19.	2	1.00	0.45	1.75	0.79
5. 2.50 1.25 0.72 2.25 6. 2.50 1.30 1.47 4.78 7. 2.50 1.30 1.65 5.36 8. 2.50 1.55 1.50 5.81 9. 2.50 1.65 1.03 4.25 10. 2.50 1.40 1.10 3.85 11. 2.50 0.40 1.18 1.18 12. 2.50 0.65 0.86 1.40 13. 1.50 0.20 0.67 0.20 14. 0.70 0.00 0.00 15. 16. 17. 18. 19.	3	2.50	1.00	1.22	3.05
6. 2.50 1.30 1.47 4.78 7. 2.50 1.30 1.65 5.36 8. 2.50 1.55 1.50 5.81 9. 2.50 1.65 1.03 4.25 10. 2.50 1.40 1.10 3.85 11. 2.50 0.40 1.18 1.18 12. 2.50 0.65 0.86 1.40 13. 1.50 0.20 0.67 0.20 14. 0.70 0.00 0.00 0.00 15. 18. 19.	4	2.50	1.25	2.29	7.16
7. 2.50 /.30 /.65 5.36 8. 2.50 /.55 /.50 5.81 9. 2.50 /.65 /.03 4.25 10. 2.50 /.40 /.10 3.85 11. 2.50 0.40 /.18 1.18 12. 2.50 0.65 0.86 /.40 13. /.50 0.20 0.67 0.20 14. 0.70 0.00 0.00 0.00 15. 16. 17. 18. 19.	5	2.50	1.25	0.72	2.25
8. 2.50 1.55 1.50 5.81 9. 2.50 1.65 1.03 4.25 10. 2.50 1.40 1.10 3.85 11. 2.50 0.40 1.18 1.18 12. 2.50 0.65 0.86 1.40 13. 1.50 0.20 0.67 0.20 14. 0.70 0.00 0.00 15. 16. 17. 18. 19.	6	2.50	1.30	1.47	4.78
9. 2.50 1.65 1.03 4.25 10. 2.50 1.40 1.10 3.85 11. 2.50 0.40 1.18 1.18 12. 2.50 0.65 0.86 1.40 13. 1.50 0.20 0.67 0.20 14. 0.70 0.00 0.00 0.00 15. 16. 17. 18. 19.	7	2.50	1.30	1.65	5.36
10. 2.50 1.40 1.10 3.85 11. 2.50 0.40 1.18 1.18 12. 2.50 0.65 0.86 1.40 13. 1.50 0.20 0.67 0.20 14. 0.70 0.00 0.00 15. 16. 17. 18. 19.	8	2.50	1.55	1.50	5.81
11. 2.50 0.40 1.18 1.18 12. 2.50 0.65 0.86 1.40 13. 1.50 0.20 0.67 0.20 14. 0.70 0.00 0.00 15. 16. 17. 18. 19. 19.	9	2.50	1.65	1.03	4.25
12. 2.50 0.65 0.86 1.40 13. 1.50 0.20 0.67 0.20 14. 6.70 0.00 0.00 15. 16. 17. 18. 19. 19.	10	2.50	1.40	1.10	3.85
13. 1.50 0.20 0.67 0.20 14. 0.70 0.00 0.00 15. 0.00 0.00 17. 0.00 0.00 18. 0.00 0.00 19. 0.00 0.00	11	2.50	0.40	1.18	
14. 6.70 0.00 0.00 15. 16. 17. 18. 19.	12	2.50	0.65	0.86	
15	13	1.50	0.20	0.67	0.20
16	14	6.70	0.00	0.00	0.00
17	15				
18	16				
19	17				
19	18				
20					
Total Flow: 40.08 (cfs)					Total Flow: 40.08 (cfs

Project Name: RICO Date: 6/27/00 Time: 0945 Sampling Personnel: (signature)	
Sampling Personnel: (signature)	
Description: Dolores River above, 5t, Louis settling Pond system	· putfall
Description. Deliver a process Selling Town - 751-17	
Vertical Distance Depth Velocity Number (ft/m) (ft/s,m/s) Segment Flow (ft ³ /s, m ³ /s)	
1. 0.00 0.00 0.00	
2. <u>1.00 0.70 0.38</u> <u>0.27</u>	
3. <u>2.50</u> <u>1.40</u> <u>0.00</u> <u>0.00</u>	•
42.50	
5. <u>2.50</u> <u>1.45</u> <u>1.39</u> <u>5.04</u>	•
6. 2.50 1.25 0.64 2.00	
7. 2.50 1.60 1.62 6.48	•
8. <u>2.50 /.40 /.75</u> 6./3	
9. <u>2.50 /.55 /.42</u> <u>5.50</u>	
10. 2.50 1.60 1.54 6.16	
11. 2.50 1.45 1.09 3.95	
12. 2.50 1.20 0.91 2.73	
13. <u>2.50</u> /.10 0.53 .1.46	
14. <u>250 050 0.64 0.80</u>	
15. <u>/.50 0.00 0.00</u> <u>0.00</u>	
16	
17	
18.	
19.	
20.	
Total Flow: <u>47.40</u>	(cfs)

Station Number: DR-3

FIELD DATA SHEET STREAM FLOW MEASUREMENT

0 Time: 1510	te: <u>6/26</u>	_		<u>:0</u>	_RIC	ect Name:	Proje	
<u> </u>		the board	_	(signature)	onnel:	pling Perso	Sam	
t adit.	charge	,	/	Louis				
gment Flow (ft ³ /s, m ³ /s)		ocity ,pa/s)		Depth (ft/pt)		Distan (ft/m	Vertical Number	
0.00		0.00		<u> </u>	>	0.00	1	1
0.00		0.00		0.90	ı	0.10	2	2
0.02		0.06	<u>. </u>	0.90)	0.40	3	3
0.07		<u> 2.78 -</u>		0.80)	0.50	4	4
0.07		2.16		0.90	<u>)</u>	0.50	5	5
0.15		5.46		0.65		0.50	6	6
<u>0.</u> 22		D.47		0.95		0.50	7	7
0.23		7.48		0.95		0.50	8	8
6.23		2.45		1.00		0.50	9	9
0.18		0.46		0.80		0.50	10	1
0.18		2.35		1.05		0.50	11	1
0.11		.21		1.00		0.50	12	1
0.00		0.00		0.95		0.50	13	1
0.00		0.00		0.85		0.50	14	1
0.00		.00		0.00		0.30	15	1
					<u>,</u>		16	1
							17	1
Total Flow: <u>1.46</u> (· -		

C:\FORM\$\FIELD\STRMFLW.FRM

	Station Number:	DR-5		·	
	Project Name: _	RICO		Date: <u>6/26/00</u>	Time: <u>/200</u>
	Sampling Person	nel: (signature)		8 - France	-
	Description:	Pond 11	Effluent		
Vert Nun	_	Depth (ft/pn)	Velocity (ft/s,m/s)	Segmen	t Flow (ft³/s, pa³/s)
1	0.00	0.00	0.00		0.00
_	0.20	0.20	0.00	•	0.00
	0.20	0.40			0.00
_	0.20	0.45			0.04
5	0.26	0.50	0.86		0.09
	0.20	0.50	1.85		0.19
7	0.20	0.50	1.58		0.16
8	0.20	0.55	1.74		0.19
9	0.20	0.50	1.98		0.20
10.	0.20	0.45	1.32		0.12
11.	0.20	0.45	0.89		0.08
12.	0.20	0.45	0.14		0.01
13.	0.30	0.00	0.00		0.00
14.					
16.					
17.					
20.					

Statio	on Number: 🔔	DR-6			
Ргоје	ect Name:	1100		Date: <u>6/26/00</u>	Time: 1035
Samp	oling Personnel	: (signature) _	Style	Agree .	
			/) (system outfull to	Dolores R. (002)
			J		
Vertical Number	Distance (ft/m)	Depth (ft/xr)	Velocity (ft/s,px/s)	Segment	Flow (ft ³ /s, m ³ /s)
					•
1	0.00	0.00	0.00		0.00
2	0.10	0.40	0.66		0.63
3	0.30	0.40	0.67		<u>0.08</u>
4	0.40	0.40	0.68		0.11
5	0.40	0.40	0.67		_0.11
6	0.40	0.40	0.76		_0.12
7	0.40	0.40	0.78		0.12
8	0.40	0.40	0.74		0,12
9	_0.40	0.40	0.63		0.10
10	0.40	0.40	0.41	. 	0.07
11	0.40	0.40	0.35		0.06
12	0.10	0.40	0.35		0.01
13			·	·····	<u> </u>
14					
15	·-·				
16					
17		<u></u>			
18	_				
				Tol	al Flow: 0.93 (cfs)

Project Name: RICO Date: 6/27/00 Time: 0855 Sampling Personnel: (signature) Description: Dolores River bulous St. Lowis settling fends system Out fall. Vertical Distance (flun) (flu	Stat	tion Number:	DR-7_		
Description: Delbres River below St, Lowi's Settiling Pond System Out fall.	Pro	ject Name:	RICO		Date: 6/27/00 Time: 0855
Description: Dolores River bulow Str. Lowis Settling Food System Out Squit	San	npling Personn	el: (signature)	Luc	Lane
Vertical Number Distance (ft/m) Depth (ft/m) Velocity (ft/s, pms) Segment Flow (ft²/s, pm²/s) 1. 0.00 0.00 0.00 0.00 2. 0.20 0.35 1.22 0.09 3. 2.50 0.45 1.82 2.05 4. 2.50 0.65 2.31 3.75 5. 2.50 0.60 1.56 2.35 6. 2.50 1.00 1.08 2.70 7. 2.50 0.65 2.21 3.59 8. 2.50 0.80 1.90 3.80 9. 2.50 0.70 1.47 2.57 10. 2.50 1.05 1.57 4.12 11. 2.50 0.95 1.39 3.30 12. 2.50 0.85 2.69 5.72 13. 2.50 1.60 2.66 10.64 14. 2.50 1.75 2.30 10.06 15. 1.10 <			. •		Contract confirmation of the
Number (ft/m) (ft/m) (ft/s, pars) Segment Flow (ft²/s, pars) 1.	Des	scription: <i>Di</i>	Plones Kiv	er below	Out fall.
2. 0.20 0.35 1.22 0.09 3. 2.50 0.45 1.82 2.05 4. 2.50 0.65 2.31 3.75 5. 2.50 0.60 1.56 2.35 6. 2.50 1.00 1.08 2.70 7. 2.50 0.65 2.21 3.59 8. 2.50 0.80 1.90 3.80 9. 2.50 0.80 1.90 3.80 9. 2.50 0.80 1.90 3.80 9. 2.50 1.05 1.57 4.12 11. 2.50 0.95 1.37 3.30 12. 2.50 0.85 2.69 5.72 13. 2.50 1.60 2.66 10.06 15. 1.10 0.00 0.00 0.00 16. 0.00 0.00 0.00 0.00 18. 0.00 0.00 0.00 0.00 19. <td></td> <td></td> <td>• .</td> <td></td> <td>Segment Flow (ft³/s, m³/s)</td>			• .		Segment Flow (ft ³ /s, m ³ /s)
2. 0.20 0.35 1.22 0.09 3. 2.50 0.45 1.82 2.05 4. 2.50 0.65 2.31 3.75 5. 2.50 0.60 1.56 2.35 6. 2.50 1.00 1.08 2.70 7. 2.50 0.65 2.21 3.59 8. 2.50 0.80 1.90 3.80 9. 2.50 0.80 1.90 3.80 9. 2.50 0.70 1.47 2.57 10. 2.50 0.95 1.37 4.12 11. 2.50 0.95 1.39 3.30 12. 2.50 0.95 2.69 5.72 13. 2.50 1.60 2.66 1.60 1.60 14. 2.50 1.75 2.30 10.06 15. 1.10 0.00 0.00 0.00		. _			
3. 2.50 0.45 1.82 2.05 4. 2.50 0.65 2.31 3.75 5. 2.50 0.60 1.56 2.35 6. 2.50 1.00 1.08 2.70 7. 2.50 0.65 2.21 3.59 8. 2.50 0.80 1.90 3.80 9. 2.50 0.80 1.90 3.80 9. 2.50 0.05 1.47 2.57 10. 2.50 1.05 1.57 $4./2$ 11. 2.50 0.05 1.37 3.30 12. 2.50 0.85 2.67 5.72 13. 2.50 1.60 2.66 10.64 14. 2.50 1.75 2.30 10.06 15. 1.10 0.00 0.00 0.00 16. 17. 0.00 0.00 0.00 0.00 10. 0.00 0.00 0.00 0.00 <	1				
4. 2.50 0.65 2.31 3.75 5. 2.50 0.60 1.56 2.35 6. 2.50 1.00 1.08 2.70 7. 2.50 0.65 2.21 3.59 8. 2.50 0.80 1.90 3.80 9. 2.50 0.80 1.90 3.80 9. 2.50 0.70 1.47 2.57 10. 2.50 1.05 1.57 4.12 11. 2.50 0.95 1.37 3.30 12. 2.50 0.85 2.67 5.72 13. 2.50 1.60 2.66 10.64 14. 2.50 1.75 2.30 10.06 15. 1.10 0.00 0.00 0.00 16. 0.00 0.00 0.00 0.00 18. 0.00 0.00 0.00 0.00 20. 0.00 0.00 0.00 0.00			0,35		
5.	3	· · · · · · · · · · · · · · · · · · ·	0.45	1,82	
6. 2.50	4	2.50	0.65	2,3/	3.75
7. 2.50 0.65 2.21 3.59 8. 2.50 0.80 1.90 3.80 9. 2.50 0.70 1.47 2.57 10. 2.50 1.05 1.57 4.12 11. 2.50 0.95 1.39 3.30 12. 2.50 0.85 2.69 5.72 13. 2.50 1.60 2.66 10.64 14. 2.50 1.75 2.30 10.06 15. 1.10 0.00 0.00 0.00 16. 17. 18. 19. 20.	5	2.50	060	1.56	2.35
8. 2.50 0.80 1.90 3.80 9. 2.50 0.70 1.47 2.57 10. 2.50 1.05 1.57 4.12 11. 2.50 0.95 1.37 3.30 12. 2.50 0.85 2.69 5.72 13. 2.50 1.60 2.66 10.64 14. 2.50 1.75 2.30 10.06 15. 1.10 0.00 0.00 0.00 16. 17. 18. 19. 20.	6	2.50	1.00	1.08_	2.70
9. 2.50 0.70 1.47 2.57 10. 2.50 1.05 1.57 4.12 11. 2.50 0.95 1.39 3.30 12. 2.50 0.85 2.69 5.72 13. 2.50 1.60 2.66 10.64 14. 2.50 1.75 2.30 10.06 15. 1.10 0.00 0.00 0.00 16. 17. 18. 19. 20	7	2.50	0.65	2.21	3.59
10. 2.50 1.05 1.57 4.12 11. 2.50 0.95 1.39 3.30 12. 2.50 0.85 2.69 5.72 13. 2.50 1.60 2.66 10.64 14. 2.50 1.75 2.30 10.06 15. 1.10 0.00 0.00 0.00 16. 17. 18. 19. 20. 20. 1.00 1.00 1.00	8	2.50	0.80	1.90	3.80
11. 2.50 0.95 1.39 3.30 12. 2.50 0.85 2.69 5.72 13. 2.50 1.60 2.66 10.64 14. 2.50 1.75 2.30 10.06 15. 1.10 0.00 0.00 0.00 16. 17. 18. 19. 20. 20. 20. 20.	9	2.50_	070	1.47	2.57
12. 2.50 0.85 2.69 5.72 13. 2.50 1.60 2.66 10.64 14. 2.50 1.75 2.30 10.06 15. 1.10 0.00 0.00 16. 17. 18. 19. 20.	10	2.50	1.05	1.57	4.12
13. 2.50 1.60 2.66 10.64 14. 2.50 1.75 2.30 10.06 15. 1.10 0.00 0.00 0.00 16. 17. 18. 19. 19. 20.	11	2.50	095	1.39	3.30
13. 2.50 1.60 2.66 10.64 14. 2.50 1.75 2.30 10.06 15. 1.10 0.00 0.00 16. 17. 18. 19. 20.	12	2.50	0.85	2.69	5.72
14. 2.50 1.75 2.30 10.06 15. 1.10 0.00 0.00 0.00 16. 17. 18. 19. 20.	13.	2.50	1.60	•	10.64
15.	14.	2.50	1.75		10.06
16		· · · · · · · · · · · · · · · · · · ·	0.00		
17				· · · · · · · · · · · · · · · · · · ·	
19				-	
19	18.				
20.					
Total Flow: 54.79 (C+5)	20				Total Flow: 54.74 (cfs)

Stati	on Number: _	₽K-10		,	
Proje	ect Name: <u>k</u>	2100	I	Date: <u>6/26/00</u>	Time: <u>1715</u>
Samı	oling Personnel	: (signature) _	45 54		
•	ription: <u>54,</u>		7-7-7-	tem at pond 1-	4 occi +
Desc	ription: <u>Or</u>	MU13 3211	ling pung 393	tem at pona 12	4 etticent.
Vertical	Distance	Depth	Velocity		
Number	(ft/pm)	(ft/m)	(ft/s,m/s)	Segment 1	flow (ft ³ /s, m ³ /s)
	_		_		:
1		0.00	0.00		0.00
2	<u>0.20</u>	0.50	0.70		0.07
3	<u>0.20</u>	0.70	1.58		0.22
4	0.20	0.70	1.40	<u></u>	0.20
5	0.20	0.80	0.98		0.16
6	0.20	0.80	<u>0.88</u>		0.14
7	0.20	0.80	0.69		0.04
8	0.20	0.70	0.55		0.03
9	0.20	0.70	0.47		0.02
10	0.20	0.60	0.42		0.05
11	0.20	0.60	0.40		0.05
12	0.20	0.60	0.31		
13	0.20	0.55	0.18		0.02
14	0.20	0.45	0.15	<u> </u>	0.01
15	0.20	0.40	0.14	· · · · · · · · · · · · · · · · · · ·	0.01
16	0.30	0.00	0.00		0.00
17		<u> </u>			·
	· · · · · · · · · · · · · · · · · · ·				
				Tota	al Flow: 1.06 (cfs

			DR-12	on Number:	Stat
<u> 76/0</u>	Date: <u>6/26/00</u>		RICO	ect Name:	Proj
		Line	el: (signature) _	pling Personne	San
to fond 18.	erland flow to	net loke	Louis tur	cription: <u>5+</u> ,	Des
ment Flow (ft ³ /s, m ³ /s)	Segm	Velocity (ft/s,en/s)	Depth (ft/m)	Distance (ft/px)	Vertical Number
0.00		0.00_	0.00	0.00	1
0.06		2.58	0.30	0.08	
0.08		3.08	0.30	0.09	3
0.18		3.85	0.30	0.16	4
0.27		3.95	0.40	0.17	5
0.17		2.83	<u>0,36</u>	0.17	5
0.14	····	2.96	0.30	0.16	7
0.12		1.97	0.35	0.17	3
0.05		1.61	<u>o. 35</u>	0.08	9. <u></u>
0.00	<u></u> .	0.00	0.00	0.25	10
					1
			- ·	<u></u>	2
		·		_	.3
		<u></u>			4
			-		16
				·	17
			···		18
Total Flow: 1.07 (· 		20

	,		DR-13	on Number:	Stat
00 Time: 1545	Date: 6/26/00		RICO	ect Name:	Pro
·	/	- Fu	el: (signature) _	pling Personn	Sam
pond 18.	of flow to	el Chan he	. Louis tunr	cription: <u>4</u>	Des
egment Flow (ft³/s, m³/s)	Segr	Velocity (ft/s,m/s)	Depth (ft/m)	Distance (ft/m)	Vertical Number
0.00		0.00	0.00	0.00	1,
0.00		0.00	0.25	0.17	2
0.01		0.19	0.30	0.16	
0.04	· · · · · · · · · · · · · · · · · · ·	0.69	0.30	0.17	4
0.05		0.76	<u> 0.35</u>		5
0.03		0.59	0.35	0.16	6
0.06		0.81	0.40	0.17	7
0.12		1.45	6.50	0,17	8
0.17		1.79	0.60	0.16	9
0.13		1.49	0.50	0.17	10
0.05		0.80	0.40	0.17	
0.02		0.33	0.35	0.16	12
0.00		0.00	0.00	0.25	13
					17
Tetal Flow: <u>0.68</u> (

APPENDIX A3

Chain of Custody Forms

	Alpine Analytical, Inc.										2814 N. Cooke, Helena, MT 59601 (406) 449-6282													
Client ESA Consultants Inc.	,	Project ID	<u> </u>				An	alysi	is Requested			Chain of Custody												
Sampler (Signature)		Site ID			-	<u></u>	7.55	5	ર્સ				Νº	20	32									
A46. 8		JUNE 28, 2000					Hard, TDS,	Metals	Metals				t¶ se	20	02	•								
Sample Identification	Sar Date	nple Time		ype Comp	Matrix	Number of Containers	Haro	751 4	77			Comments	Turna	round Rush	Sample Return	Disposal Dispose**								
TAG#110	1101	1240	×		SW	I		X				Cd, Cu, Fe, Pb, Mn, Ag, Zn	×	112311	7,000 <u>1</u>	×								
TAG # 40-111	6/26	1245	×		SW	1	Х						×			×								
TAG # 112	6126	1420	X		5W	1			X			N //	X			X								
TAG # 113	6/26	1420	×		SW	. 1		Х		Ц		· //	X			×								
TA6 # 114	6/26	1425	X		5W	1	X						X			×								
TAG # 115	6/26	1445	×		5W	1		<u> </u>	X			\\ //	X			×								
TAG # 116	6/26	1445	×		SW	1		Х				W //	×			×								
TAG # 117	6/26	1455	<u>×</u>		SW	1	Х						Х			×								
TAGS # 118, 119 4	6/26	0825	×		sW	2	X	X				" "	\times			X								
TA65# 120, 121 &	86/26	0825	X		5W	2	X	X				w //	×			×								
Relinquished by:		G/28/	Received by:						Relinquished by:				Date/Time	e Received by:										
Refaquished by:		Date/Time	Received by:				Relinquished by:					7	Date/Time (c. 39°C 1225	Prime Received by Laboratory: 350 The Charles Hossfuld										

^{**} An additional charge will be made for samples disposed of by Alpine Analytical, Inc. .

	Alpi	ine A	naly	tica	l, In	с.		2814	5 N. C	Cooke, H	lelena,	MT 5	9601 (406) 449	-6282 				
Client		Project ID	^				An	alysi	s Re	quested		Chain of Custody							
ESA Consultants Inc	-,	,					755	N N	5		7			MO	20	24			
Sampler (Signature)	:	JUNE 28, ZOO					HARD, TBS, T	DISS Metals	Metals					N 2	20	3 I			
Sample Identification Date		nple Time		/pe Comp	Matrix	Number of Containers	HARE	DISS	TR			Com	ments	Turna Normal	round Rush	Sample Return	Disposal Dispose**		
TAGS # 122, 123	6127		×		sw	2	X	Х			1 *	-	Fe, Pb, q, Zn	×			×		
TAGS# 124, 125		1050 1025			5W	2	×	×			\\		11	X			×		
TAGS# 126, 127	6127	1245	X		5W	2	X	×			\\		//	X			×		
TAG#128	6127	1245	×	ļ <u>-</u>	SW	1			X		"	١.	11	X		,,,	×		
TAG # 129	6/27	1250	×		รพ	1	X				<u> </u>	<u> </u>	<u></u>	X	:		X		
TAG # 130	6/27	1250	X		SW	1		X			"		//	Х	1		Х		
TAG # 131	6/27	1400	×		SW	1	X							X			X		
TAG # 132	6/27	1350	×		SW	1		X			"		11	X			X		
TAG # 133	6127	1445	X		SW	1	×							X			×		
TAG# 134	6127	1425	X		SW	1	ļ	X.			"	L	//	X			×		
Relinquished by:	-	Date/Time 6/28/	∞		Received	by:			Reline	quished by:			}	Date/Time	Received	by.			
Relinquisped by:		Date/Time		<u>.</u> .	Received	by:			Reline	quished by:			ĺ	Datestime U 29/00 1330		by Laboratory. 22.50 HC	sSeld.		

^{**} An additional charge will be made for samples disposed of by Alpine Analytical, Inc. .

	2814 N. Cooke, Helena, MT 59601 (406) 449-6282																		
Client ESA Consultants	Inc.	Project ID R10	20				<u> </u>	alysi	s Re	queste	ď	Chain of Custody							
Sampler (Signature)	<u>-</u>	Site 1D JUNE 28, 2000					,705, 755	D155 Metals	Metals		ļ			Nõ	20	30			
Sample Identification	Sar Date	nple Time		/pe Comp	Matrix	Number of Containers	Hard,TOS	D155	٦ ۾			Comm	ents	Turna	round	Sample Return	Dispose**		
TAG # 100	<u> </u>	0930	-		5W	1			Χ			Cd, Cu, Mn, Ag,		×			×		
TAG # 101	6126	0930	×		5W	1		Χ				11	11	×			×		
TAG # 102	6/26	0935	×		5W	1	×							×			×		
TAG # 103	6126	1005	×		SW	1			X			11	//	X			×		
TA6 # 104	6126	1005	×		5W	1		Х				"	//	×			×		
TAG # 105	6126	1010	×		SW	1	Х							×			X		
TAG # 106	6126	1135	×		sw	1	_		×	 -		11	//	X			×		
TA6 # 107	6/26	1135	×		5W	1		X	_			"	"	×			×		
TAG # 108	6/26	1145	X		5W	1	X			<u> </u>				×			×		
TAG # 109	6126	1240	×		รฟ	1	<u> </u>		X			"	//	X			×		
Relinquished by:		Oate/Time			Received I	oy:			Relinx	inieyeg p	y:			Oate/Time	Received	oy.			
Relinfluished by:		Date/Time	Received by:			Relinquished by:						Ç	Date/Time Received by Laboratory (129/16) 13-30 Huuxa Huste			Seld			

^{**} An additional charge will be made for samples disposed of by Alpine Analytical, Inc. .

APPENDIX B

Analytical Report Package

APPENDIX B1

Analysis Results

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Case Narrative

On June 29, 2000, thirty samples from a project identified as "RICO" were received by our laboratory for analysis. The chain of custody indicated that the water samples were to be analyzed for Hardness, Total Dissolved Solids (TDS), Total Suspended Solids, Dissolved Metals, and Trace Metals. The samples were received cool, intact and delivered by UPS.

Results are summarized on the following page.

Should you have any questions regarding this analysis feel free to give us a call at 449-6282.

We appreciate the fact that you have chosen us as your analytical lab.

Sincerely yours,

Harry Howell Laboratory Manager

RECEIVED
AUG 1 8 2000
BY:_____

2814 N. Cooke Street, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Project ID: RICO

Site ID: JUNE 28, 2000

Date Sampled: 26,27-Jun-00 Date Received: 29-Jun-00

Chain of Custody #: 2030 & 2031

											TAG#	TAG#	TAG#		
	1	TAG#	TAG#	TAG#	TAG#	TAG#	TAG#	TAG#	TAG#	TAG#	122,	124,	126,	TAG#	TAG#
Water Analysis	TAG#100	101	102	103	104	105	106	107	108	109	123	125	127	128	129
Un	its					•									
Hardness			793			1189			701		120	102	<1		90
Total Dissolved Solids (TDS)			1070			1660			962		178	146	24		127
Total Suspended Solids (TSS)			5.0			26_			2.0		1.0	1.0	1.0		7.0
Dissolved Metals									_						
Uni	ts ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Cadmium		5.9			0.11			6.3			0.20	0.15	0.14		
Copper		<10		-	<10			<10			30	<10	<10		
fron		<20			3880	-		<20			<20	<20	<20		
Lead		<0.5		1	0.50			<0.5	ļ		0.70	<0.5	<0.5		
Manganese		1970			1200			2550			163	12	< 5		
Silver		0.05		-	<0.02			0.05	-		0.08	<0.02	<0.02		
Zinc		1410			90			1790			<10	20	<10		
Total Recoverable Metals		<u> </u>											•		
Cadmium	8.6	T		0.13			6.8			12				0.13	
Copper	<10			<10			<10			<10	***			10	
Iron	450			4690			580			960				<20	
Lead	<0.5			0.60			<0.5			<0.5				0.60	
Manganese	2070			1220			2670			5160				<5	
Silver	0.05			0.09			0.04			0.09				<0.02	
Zinc	1530			270			2170			2420				20	

2814 N. Cooke Street, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Project ID: RICO

Site ID: JUNE 28, 2000 Date Sampled: 26,27-Jun-00 Date Received: 29-Jun-00 Chain of Custody #: 2031 & 2032

														TAG#	TAG#
		TAG#				TAG#	I		TAG#			i		118,	120,
Water Analysis	TAG#130	131	132	133	TAG#134	110	111	112	113	114	115	116	117	119	121
. Units	:									<u> </u>		i			
Hardness		116		2149			733	-		12 .	•	,	689	148	150
Total Dissolved Solids (TDS)		108		7089			1155			974			955	188	200
Total Suspended Solids (TSS)		1.0		6.0			4.0			3.0			14	<1	2.0
Dissolved Metals									_						
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L_	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Cadmium	4.1		1.4		7000	10			10_			18	- -	0.70	0.80
Copper	20		10		5200	<10	-		<10			30	ì	<10	<10
Iron	60		<20		844,000	<20		- 1	<20			350		<20	<20
Lead	0.90		3.2		505	<0.5			<0.5		,	<0.5		<0.5	<0.5
Manganese	230		9.6		149,000	4840			2650			2660		443	446
Silver	<0.02		<0.02		1.4	0.06			<0.02			<0.02		<0.02	<0.02
Zinc	380		770		230,000	1970			2620			3600		160	190
Total Recoverable Metals								-				-			
Cadmium								14_			15				
Copper								40			100				
Iron								210			3210				
Lead								0.80			1.6				
Manganese								2700			2730				
Silver								0.02			<0.02				
Zinc								2780			3670				

2814 N. Cooke, Helena, MT 59601

(406)449-6282

TOTAL RECOVERABLE METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#100

Project ID: RICO

Chain of Custody No.: 2030

Site ID: JUNE 28, 200

Laboratory ID:

7G291

Date / Time Sampled:

26-Jun-00 @ 09:30

Sample Matrix:

Water

Date / Time Received:

29-Jun-00 @ 13:30

	Analytical	Practical Quantitation	
Parameter	Result	Limit (PQL)	Method
Cadmium, ug/L	8.6	0.02	EPA 7131
Copper, ug/L	ND	10	EPA 6010
Iron, ug/L	450	20	EPA 7381
Lead, ug/L	ND	0.5	EPA 7421
Manganese, ug/L	2070	5	EPA 6010
Silver, ug/L	0.05	0.02	EPA 7761
Zinc, ug/L	1530	10	EPA 6010

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#101

Project ID: RICO

Site ID: JUNE 28, 200

Chain of Custody No.: 2030

Laboratory ID:

7G292

Date / Time Sampled:

26-Jun-00 @ 09:30

Sample Matrix:

Water

Date / Time Received:

29-Jun-00 @ 13:30

		Practical	
	Analytical	Quantitation	
Parameter	Result	Limit (PQL)	Method
Cadmium, ug/L	5.9	0.02	EPA 7131
Copper, ug/L	ND	10	EPA 6010
Iron, ug/L	ND	20	EPA 7381
Lead, ug/L	ND	0.5	EPA 7421
Manganese, ug/L	1970	5	EPA 6010
Silver, ug/L	0.05	0.02	EPA 7761
Zinc, ug/L	1410	10	EPA 6010

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#102

Project ID: RICO

Site ID: JUNE 28, 200

Chain of Custody #: 2030

Laboratory ID: 7G293 Condition:

Intact

Date / Time Sampled: 26-Jun-00 @ 09:35

Date / Time Received: 29-Jun-00 @ 13:30

	Analytical		Method
	,a.,a.		
Parameter	Result	Date/Time Analyzed	Reference

Physical Parameters

Hardness, mg/L	793	12-Jul-00 @ 10:15	EPA 6010
Total Dissolved Solids, mg/L	1070	05-Jul-00 @ 14:30	EPA 160.1
Total Suspended Solids, mg/L	5.0	05-Jul-00 @ 14:00	EPA 160.2
	•	•	

References:

EPA-Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983

2814 N. Cooke, Helena, MT 59601

(406)449-6282

TOTAL RECOVERABLE METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#103

Project ID: RICO

Chain of Custody No.: 2030

Site ID: JUNE 28, 200

Laboratory ID: Sample Matrix: 7G294 Water Date / Time Sampled:

26-Jun-00 @ 10:05

Date / Time Received:

29-Jun-00 @ 13:30

		Practical	· · · · · · · · · · · · · · · · · · ·
	Analytical	Quantitation	
Parameter	Result	Limit (PQL)	Method
Cadmium, ug/L	0.13	0.02	EPA 7131
Copper, ug/L	ND	10	EPA 6010
Iron, ug/L	4690	20	EPA 7381
Lead, ug/L	0.60	0.5	EPA 7421
Manganese, ug/L	1220	5	EPA 6010
Silver, ug/L	0.09	0.02	EPA 7761
Zinc, ug/L	270	10	EPA 6010

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#104

Project ID: RICO

Chain of Custody No.: 2030

Site ID: JUNE 28, 200

Laboratory ID: Sample Matrix: 7G295 Water Date / Time Sampled:

26-Jun-00 @ 10:05

Date / Time Received:

29-Jun-00 @ 13:30

	· · · · · ·	Practical	
	Analytical	Quantitation	
Parameter	Result	Limit (PQL)	Method
Cadmium, ug/L	0,11	0.02	EPA 7131
Copper, ug/L	ND	10	EPA 6010
Iron, ug/L	3880	20	EPA 7381
Lead, ug/L	0.50	0.5	EPA 7421
Manganese, ug/L	1200	5	EPA 6010
Silver, ug/L	ND	0.02	EPA 7761
Zinc, ug/L	90	10	EPA 6010

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#105

Project ID: RICO

Site ID: JUNE 28, 200

Chain of Custody #: 2030

Laboratory ID: 7G296

Condition:

Intact

Date / Time Sampled: 26-Jun-00 @ 10:10

Date / Time Received: 29-Jun-00 @ 13:30

	Analytical		Method
Parameter	Result	Date/Time Analyzed	Reference

Physical Parameters

Hardness, mg/L	1189	12-Jul-00 @ 10:15	EPA 130.2
Total Dissolved Solids, mg/L	1660	05-Jul-00 @ 14:30	EPA 160.1
Total Suspended Solids, mg/L	26	05-Jul-00 @ 14:00	EPA 160.2
	_ -		

References:

EPA-Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983

2814 N. Cooke, Helena, MT 59601

(406)449-6282

TOTAL RECOVERABLE METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#106

Project ID: RICO

Site ID: JUNE 28, 200

Chain of Custody No.: 2030

Laboratory ID: Sample Matrix: 7G297 Water Date / Time Sampled:

26-Jun-00 @ 11:35

(

Date / Time Received:

29-Jun-00 @ 13:30

	Practical			
	Analytical	Quantitation		
Parameter	Result	Limit (PQL)	Method	
Cadmium, ug/L	6.8	0.02	EPA 7131	
Copper, ug/L	ND	10	EPA 6010	
Iron, ug/L	580	20	EPA 7381	
Lead, ug/L	ND	0.5	EPA 7421	
Manganese, ug/L	2670	5	EPA 6010	
Silver, ug/L	0.04	0.02	EPA 7761	
Zinc, ug/L	2170	10	EPA 6010	

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#107

Project ID: RICO

Site ID: JUNE 28, 200

Chain of Custody No.: 2030

Laboratory ID:

7G298

Date / Time Sampled:

26-Jun-00 @ 11:35

Sample Matrix:

Water

Date / Time Received:

29-Jun-00 @ 13:30

	Analytical	Practical Quantitation	Method	
Parameter	Result	Limit (PQL)		
Cadmium, ug/L	6.3	0.02	EPA 7131	
Copper, ug/L	ND	10	EPA 6010	
Iron, ug/L	N D	20	EPA 7381	
Lead, ug/L	ND	0.5	EPA 7421	
Manganese, ug/L	2550	5	EPA 6010	
Silver, ug/L	0.05	0.02	EPA 7761	
Zinc, ug/L	1790	10	EPA 6010	

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#108

Project ID: RICO

Site ID: JUNE 28, 200

Chain of Custody #: 2030

Laboratory ID: 7G299
Condition: Intact

Date / Time Sampled: 26-Jun-00 @ 11:45

Date / Time Received: 29-Jun-00 @ 13:30

	Analytical	Method
Parameter	Result Date/Time	Analyzed Reference

Physical Parameters

Hardness, mg/L	701	12-Jul-00 @ 10:15	EPA 130.2
Total Dissolved Solids, mg/L	962	05-Jul-00 @ 14:30	EPA 160.1
Total Suspended Solids, mg/L	2.0	05-Jul-00 @ 14:00	EPA 160.2
I		_	

References:

EPA-Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983

2814 N. Cooke, Helena, MT 59601

(406)449-6282

TOTAL RECOVERABLE METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#109

Project ID: RICO

Site ID: JUNE 28, 200

Chain of Custody No.: 2030

Laboratory ID: Sample Matrix: 7G300 Water Date / Time Sampled:

26-Jun-00 @ 12:40

Date / Time Received:

29-Jun-00 @ 13:30

	Practical		
	Analytical	Quantitation	
Parameter	Result	Limit (PQL)	Method
Cadmium, ug/L	12	0.02	EPA 7131
Copper, ug/L	ND	10	EPA 6010
Iron, ug/L	960	20	EPA 7381
Lead, ug/L	ND	0.5	EPA 7421
Manganese, ug/L	5160	5	EPA 6010
Silver, ug/L	0.09	0.02	EPA 7761
Zinc, ug/L	2420	10	EPA 6010

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#122, 123

Project ID: RICO

Site ID: JUNE 28, 200

Chain of Custody #: 2031

Laboratory ID: 7G301 Condition: Intact Date / Time Sampled: 27-Jun-00 @ 09:25

Date / Time Received: 29-Jun-00 @ 13:30

	Analytical		Method
l _ .	_ •		
Parameter	Result	Date/ lime Analyzed	Reference

Physical Parameters

1			
Hardness, mg/L	120	12-Jul-00 @ 10:15	EPA 130.2
Total Dissolved Solids, mg/L	178	05-Jul-00 @ 14:30	EPA 160.1
Total Suspended Solids, mg/L	1.0	05-Jul-00 @ 14:00	EPA 160.2
_			,

References:

EPA-Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#122, 123

Project ID: RICO

Chain of Custody No.: 2031

Site ID: JUNE 28, 200

Laboratory ID: Sample Matrix: 7G301 Water Date / Time Sampled:

27-Jun-00 @ 09:25

Date / Time Received:

29-Jun-00 @ 13:30

	Practical Analytical Quantitation			
Parameter	Result	Limit (PQL)	Method	
Cadmium, ug/L	0.20	0.02	EPA 7131	
Copper, ug/L	30	10	EPA 6010	
Iron, ug/L	ND	20	EPA 7381	
Lead, ug/L	0.70	0.5	EPA 7421	
Manganese, ug/L	163	5	EPA 6010	
Silver, ug/L	0.08	0.02	EPA 7761	
Zinc, ug/L	ND	10	EPA 6010	

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#124, 125

Project ID: RICO

Site ID: JUNE 28, 200

Chain of Custody #: 2031

Laboratory ID: 7G302 Condition: Intact Date / Time Sampled: 27-Jun-00 @ 10:25 Date / Time Received: 29-Jun-00 @ 13:30

	Analytical		Method
Parameter	Result	Date/Time Analyzed	Reference

Physical Parameters

Hardness, mg/L	102	12-Jul-00 @ 10:15	EPA 6010
Total Dissolved Solids, mg/L	146	05-Jul-00 @ 14:30	EPA 160.1
Total Suspended Solids, mg/L	1.0	05-Jul-00 @ 14:00	EPA 160.2

References:

EPA-Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#124, 125

Project ID: RICO

Chain of Custody No.: 2031

Site ID: JUNE 28, 200

Laboratory ID: Sample Matrix:

7G302 Water Date / Time Sampled:

27-Jun-00 @ 10:25

Date / Time Received:

29-Jun-00 @ 13:30

0

	Practical			
	Analytical	Quantitation		
Parameter	Result	Limit (PQL)	Method	
Cadmium, ug/L	0.15	0.02	EPA 7131	
Copper, ug/L	ND	10	EPA 6010	
Iron, ug/L	ND	20	EPA 7381	
Lead, ug/L	ND	0.5	EPA 7421	
Manganese, ug/L	12	5	EPA 6010	
Silver, ug/L	ND .	0.02	EPA 7761	
Zinc, ug/L	20	10	EPA 6010	

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#126, 127

Project ID: RICO

Site ID: JUNE 28, 200

Chain of Custody #: 2031

Laboratory ID: 7G303

Date / Time Sampled: 27-Jun-00 @ 12:45
Date / Time Received: 29-Jun-00 @ 13:30

Condition:

Parameter

Intact

Α	nalytical	-	Method
	Result	Date/Time Analyzed	Reference

Physical Parameters

	_		
Hardness, mg/L	<1	12-Jul-00 @ 10:15	EPA 130.2
Total Dissolved Solids, mg/L	24	05-Jul-00 @ 14:30	EPA 160.1
Total Suspended Solids, mg/L	1.0	05-Jul-00 @ 14:00	EPA 160.2
		_	

References:

EPA-Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#126, 127

Project ID: RICO

Site ID: JUNE 28, 200

Chain of Custody No.: 2031

.

7G303

Date / Time Sampled:

27-Jun-00 @ 12:45

Laboratory ID: Sample Matrix:

Water

Date / Time Received:

29-Jun-00 @ 13:30

(:

		Practical		
	Analytical	Quantitation		
Parameter	Result	Limit (PQL)	Method	
Cadmium, ug/L	0.14	0.02	EPA 7131	
Copper, ug/L	ND	10	EPA 6010	
Iron, ug/L	ND	20	EPA 7381	
Lead, ug/L	ND	0.5	EPA 7421	
Manganese, ug/L	ND	5	EPA 6010	
Silver, ug/L	ND	0.02	EPA 7761	
Zinc, ug/L	ND	10	EPA 6010	

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

TOTAL RECOVERABLE METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#128

Project ID: RICO

Site ID: JUNE 28, 200

Chain of Custody No.: 2031

Laboratory ID:

7G304

Date / Time Sampled:

27-Jun-00 @ 12:45

Sample Matrix:

Water

Date / Time Received:

29-Jun-00 @ 13:30

	Analytical	Practical Analytical Quantitation		
Parameter	Result	Limit (PQL)	Method	
 Cadmium, ug/L	0.13	0.02	EPA 7131	
Copper, ug/L	10	10	EPA 6010	
Iron, ug/L	ND	. 20	EPA 7381	
Lead, ug/L	0.60	0.5	EPA 7421	
Manganese, ug/L	ND	5	E:PA 6010	
Silver, ug/L	ND	0.02	EPA 7761	
Zinc, ug/L	20	10	EPA 6010	

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#129

Project ID: RICO

Site ID: JUNE 28, 200

Chain of Custody #: 2031

Laboratory ID: 7G305 Condition: Intact Date / Time Sampled: 27-Jun-00 @ 12:50

Date / Time Received: 29-Jun-00 @ 13:30

	Analytical		Method	
Parameter	Result	Date/Time Analyzed	Reference	

Physical Parameters

Hardness, mg/L	90	12-Jul-00 @ 10:15	EPA 130.2
Total Dissolved Solids, mg/L	127	05-Jul-00 @ 14:30	EPA 160.1
Total Suspended Solids, mg/L	7.0	05-Jul-00 @ 14:00	EPA 160.2

References:

EPA-Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#130

Project ID: RICO

Chain of Custody No.: 2031

Site ID: JUNE 28, 2000

Laboratory ID: Sample Matrix: 7G306 Water Date / Time Sampled:

27-Jun-00 @ 12:50

Date / Time Received:

29-Jun-00 @ 13:30

		Practical		
	Analytical	Quantitation		
Parameter	Result	Limit (PQL)	Method	
Cadmium, ug/L	4.1	0.02	EPA-7131	
Copper, ug/L	20	10	EPA 6010	
Iron, ug/L	60	20	EPA 7381	
Lead, ug/L	0.90	0.5	EPA 7421	
Manganese, ug/L	230	5	EPA 6010	
Silver, ug/L	ND	0.02	EPA 7761	
Zinc, ug/L	380	10	EPA 6010	

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#131

Project ID: RICO

Site ID: JUNE 28, 2000

Chain of Custody #: 2031

Laboratory ID: 7G307

Condition: Intact Date / Time Sampled: 27-Jun-00 @ 14:00

Date / Time Received: 29-Jun-00 @ 13:30

	Analytical		Method	٦
Parameter	Result	Date/Time Analyzed	Reference	_

Physical Parameters

Hardness, mg/L	116	31-Aug-00 @ 13:03	EPA 130.2
Total Dissolved Solids, mg/L	108	31-Aug-00 @ 16:00	EPA 160.1
Total Suspended Solids, mg/L	1.0	05-Jul-00 @ 14:00	EPA 160.2

References:

EPA-Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#132

Project ID: RICO

Site ID: JUNE 28, 2000

Chain of Cuptody No.: 2031

Laboratory ID:

7G308

Date / Time Sampled:

27-Jun-00 @ 13:50

(-

Sample Matrix:

Water

Date / Time Received:

29-Jun-00 @ 13:30

		Practical		
	Analytical	Quantitation		
Parameter	Result	Limit (PQL)	Method	
Cadmium, ug/L	1.4	0.02	EPA 6010	
Copper, ug/L	10	10	EPA 6010	
Iron, ug/L	ND	20	EPA 6010	
Lead, ug/L	3.2	0.5	EPA 7421	
Manganese, ug/L	9.6	5	EPA 6010	
Silver, ug/L	ND	0.02	EPA 7761	
Zinc, ug/L	770	10	EPA 6010	

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#133

Project ID: RICO

Site ID: JUNE 28, 2000

Chain of Custody #: 2031

Laboratory ID: 7G309

Condition:

Intact

Date / Time Sampled: 27-Jun-00 @ 14:45

Date / Time Received: 29-Jun-00 @ 13:30

	Analytical		Method
Parameter	Result	Date/Time Analyzed	Reference

Physical Parameters

Hardness, mg/L	2149	12-Jul-00 @ 10:15	EPA 130.2
Total Dissolved Solids, mg/L	7089	05-Jul-00 @ 14:30	EPA 160.1
Total Suspended Solids, mg/L	6.0	05-Jul-00 @ 14:00	EPA 160.2
		•	

References:

EPA-Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983

Reviewed by:	
--------------	--

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#134

Project ID: RICO

Site ID: JUNE 28, 2000

Chain of Custody No.: 2031

Laboratory ID: Sample Matrix: 7G310 Water

Date / Time Sampled:

27-Jun-00 @ 14:25

Date / Time Received:

29-Jun-00 @ 13:30

6/3

		Practical	
Parameter	Analytical	Quantitation Limit (PQL)	
	Result		Method
Cadmium, ug/L	7000	0.02	EPA 7131
Copper, ug/L	5200	10	EPA 6010
Iron, ug/L	844,000	20	EPA 7381
Lead, ug/L	505	0.5	EPA 7421
Manganese, ug/L	149,000	5	EPA 6010
Silver, ug/L	1.4	0.02	EPA 7761
Zinc, ug/L	230,000	10	EPA 6010

Comments:

References:

SW-846, USEPA, 3rd. Edition.

Reviewed by: ____

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#110

Project ID: RICO

Site ID: JUNE 28, 2000

Chain of Custody No.: 2032

Laboratory ID:

7G311

Date / Time Sampled:

26-Jun-00 @ 12:40

8

Sample Matrix:

Water

Date / Time Received:

29-Jun-00 @ 13:30

		Practical	al	
Parameter	Analytical	Quantitation		
	Result	Límit (PQL)	<u>Method</u>	
Cadmium, ug/L	10	0.02	EPA 7131	
Copper, ug/L	ND	10	EPA 6010	
tron, ug/L	ND	20	EPA 7381	
Lead, ug/L	ND	0.5	EPA 7421	
Manganese, ug/L	4840	5	EPA 6010	
Silver, ug/L	0.06	0.02	EPA 7761	
Zinc, ug/L	1970	10	EPA 6010	

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#111

Project ID: RICO

Site ID: JUNE 28, 2000

Chain of Custody #: 2032

Laboratory ID: 7G312 Condition: Intact Date / Time Sampled: 26-Jun-00 @ 12:45

Date / Time Received: 29-Jun-00 @ 13:30

	Analytical		Method
Parameter	Result	Date/Time Analyzed	Reference

Physical Parameters

Hardness, mg/L	733	12-Jul-00 @ 10:15	EPA 130.2
Total Dissolved Solids, mg/L	1155	05-Jul-00 @ 14:30	EPA 160.1
Total Suspended Solids, mg/L	4.0	05-Jul-00 @ 14:00	EPA 160.2

References:

EPA-Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983

Reviewed by:	
--------------	--

2814 N. Cooke, Helena, MT 59601

(406)449-6282

TOTAL RECOVERABLE METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#112

Project ID: RICO

Chain of Custody No.: 2032

Site ID: JUNE 28, 2000

Laboratory ID: Sample Matrix: 7G313 Water Date / Time Sampled:

26-Jun-00 @ 14:20

Date / Time Received:

29-Jun-00 @ 13:30

		Practical	 ·
Parameter	Analytical	Quantitation	
	Result	Limit (PQL)	Method
 Cadmium, ug/L	14	0.02	EPA 7131
Copper, ug/L	40	10	EPA 6010
iron, ug/L	210	- 20	EPA 7381
Lead, ug/L	0.80	0.5	EPA 7421
Manganese, ug/L	2700	5	EPA 6010
Silver, ug/L	0.02	0.02	EPA 7761
Zinc, ug/L	2780	10	EPA 6010

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#113

Project ID: RICO

Project ID: RICO

Chain of Custody No.: 2032

Site ID: JUNE 28, 2000

Laboratory ID: Sample Matrix: 7G314 Water Date / Time Sampled:

26-Jun-00 @ 14:20

Date / Time Received:

29-Jun-00 @ 13:30

		Practical		
Parameter	Analytical	Quantitation	tation	
	Result	Limit (PQL)	Method	
Cadmium, ug/L	10	0.02	EPA 7131	
Copper, ug/L	ND	10	EPA 6010	
Iron, ug/L	ND	20	EPA 7381	
Lead, ug/L	ND	0.5	EPA 7421	
Manganese, ug/L	2650	5	EPA 6010	
Silver, ug/L	ND	0.02	EPA 7761	
Zinc, ug/L	2620	10	EPA 6010	

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#114

Project ID: RICO

Site ID: JUNE 28, 2000

Chain of Custody #: 2032

Laboratory ID: 7G315 Condition: Intact Date / Time Sampled: 26-Jun-00 @ 14:25

Date / Time Received: 29-Jun-00 @ 13:30

	Analytical		Method	_
Parameter	Result	Date/Time Analyzed	Reference	!

Physical Parameters

12-Jul-00 @ 10:15 EPA 130.2
12-301-00 @ 10.15 EPA 130.2
4 05-Jul-00 @ 14:30 EPA 160.1
05-Jul-00 @ 14:00 EPA 160.2

References:

EPA-Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983

2814 N. Cooke, Helena, MT 59601

(406)449-6282

TOTAL RECOVERABLE METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#115

Project ID: RICO

Site ID: JUNE 28, 2000

Chain of Custody No.: 2032

Laboratory ID:

7G316

Date / Time Sampled:

26-Jun-00 @ 14:45

Sample Matrix:

Water

Date / Time Received:

29-Jun-00 @ 13:30

		Practical	
	Analytical	Quantitation	
Parameter	Result	Limit (PQL)	Method
Cadmium, ug/L	15	0.02	EPA 7131
Copper, ug/L	100	10	EPA 6010
iron, ug/L	3210	20	EPA 7381
Lead, ug/L	1.6	0.5	EPA 7421
Manganese, ug/L	2730	5	EPA 6010
Silver, ug/L	ND	0.02	EPA 7761
Zinc, ug/L	3670	10	EPA 6010

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#116

Project ID: RICO

Chain of Custody No.: 2032

Site ID: JUNE 28, 2000

Laboratory ID: Sample Matrix: 7G317 Water Date / Time Sampled:

26-Jun-00 @ 14:45

Date / Time Received:

29-Jun-00 @ 13:30

-			
Parameter	Analytical	Quantitation	
	Result	Limit (PQL)	Method
Cadmium, ug/L	18	0.02	EPA 7131
Copper, ug/L	30	10	EPA 6010
Iron, ug/L	350	20	EPA 7381
Lead, ug/L	ND	0.5	EPA 7421
Manganese, ug/L	2660	5	EPA 6010
Silver, ug/L	ND	0.02	EPA 7761
Zinc, ug/L	3600	10	EPA 6010

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, inc.

Date Reported: 26-Jul-00

Sample ID: TAG#117

Project ID: RICO

Site ID: JUNE 28, 2000

Chain of Custody #: 2032

Laboratory ID: 7G318 Condition: Intact Date / Time Sampled: 26-Jun-00 @ 14:55

Date / Time Received: 29-Jun-00 @ 13:30

	Analytical		Method
Parameter	Result	Date/Time Analyzed	Reference

Physical Parameters

Hardness, mg/L	689	12-Jul-00 @ 10:15	EPA 130.2
Total Dissolved Solids, mg/L	955	05-Jul-00 @ 14:30	EPA 160.1
Total Suspended Solids, mg/L	14	05-Jul-00 @ 14:00	EPA 160.2

References:

EPA-Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983

Reviewed by:	<u> </u>
--------------	----------

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#118, 119

Project ID: RICO

Site ID: JUNE 28, 2000

Chain of Custody #: 2032

Laboratory ID: 7G319 Condition: Intact Date / Time Sampled: 27-Jun-00 @ 08:25

Date / Time Received: 29-Jun-00 @ 13:30

	Analytical		Method
Parameter	Result	Date/Time Analyzed	Reference_

Physical Parameters

Hardness, mg/L	148	12-Jul-00 @ 10:15	EPA 130.2
Total Dissolved Solids, mg/L	188	31-Aug-00 @ 16:00	EPA 160.1
Total Suspended Solids, mg/L	<1	05-Jul-00 @ 14:00	EPA 160.2

References:

EPA-Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#118, 119

Project ID: RICO

Site ID: JUNE 28, 2000

Chain of Custody No.: 2032

Laboratory ID;

7G319

Date / Time Sampled:

27-Jun-00 @ 08:25

Sample Matrix:

Water

Date / Time Received:

29-Jun-00 @ 13:30

	Practical			
	Analytical	Quantitation		
Parameter	Result	Limit (PQL)	Method	
Cadmium, ug/L	0.70	0.02	EPA 7131	
Copper, ug/L	ND	10	EPA 6010	
Iron, ug/L	ND	20	EPA 7381	
Lead, ug/L	ND	0.5	EPA 7421	
Manganese, ug/L	443	5	EPA 6010	
Silver, ug/L	ND	0.02	EPA 7761	
Zinc, ug/L	160	10	EPA 6010	

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: Tag#120, 121

Project ID: RICO

Site ID: JUNE 28, 2000

Chain of Custody #: 2032

Laboratory ID: 7G320 Condition:

Intact

Date / Time Sampled: 27-Jun-00 @ 08:25

Date / Time Received: 29-Jun-00 @ 13:30

	Analytical	·	Method
Parameter	Result	Date/Time Analyzed	Reference

Physical Parameters

Hardness, mg/L	150	12-Jul-00 @ 10:15	EPA 130.2
Total Dissolved Solids, mg/L	200	31-Aug-00 @ 16:00	EPA 160.1
Total Suspended Solids, mg/L	2.0	05-Jul-00 @ 14:00	EPA 160.2
Total Suspended Solids, Hig/L	2.0	00-001-00 @ 14.00	EFA 100.2

References:

EPA-Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: Tag#120, 121

Project ID: RICO

Site ID: JUNE 28, 2000

Chain of Custody No.: 2032

Laboratory ID:

7G320

Date / Time Sampled:

27-Jun-00 @ 08:25

Sample Matrix:

Water

Date / Time Received:

29-Jun-00 @ 13:30

	Practical			
	Analytical	Quantitation		
Parameter	Result	Limit (FQL)	Method	
Cadmium, ug/L	0.80	0.02	EPA 7131	
Copper, ug/L	ND	10	EPA 6010	
Iron, ug/L	ND	20	EPA 7381	
Lead, ug/L	ND	0.5	EPA 7421	
Manganese, ug/L	446	5	EPA 6010	
Silver, ug/L	ND	0.02	EPA 7761	
Zinc, ug/L	190	10	EPA 6010	

Comments:

References:

SW-846, USEPA, 3rd. Edition.

APPENDIX B2

Laboratory Quality Control Results

Quality

Control

Data

2814 N. Cooke, Helena, MT 59601

(406)449-6282

METALS Quality Control Sample

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: Quality Control Sample

Project ID: RICO

Site ID: JUNE 28, 2000

Laboratory ID:

QC

Sample Matrix:

Water

Parameter	Analytical Result	TRUE Value	Range
Cadmium, ug/L	0.005	0.005	0.004 - 0.006
Copper, ug/L	0.31	0.30	0.27 - 0.34
Iron, ug/L	0.33	0.33	0.29 - 0.38
Lead, ug/L	13.2	12.5	11.5 - 13.5
Manganese, ug/L	2.3	2.1	1.9 - 2.3
Silver, ug/L	0.78	0.80	0.70 - 0.90
Zinc, ug/L	1.6	1.6	1.4 - 1.8

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS Duplicate analysis

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#101 -- Duplicate

Project ID: RICO

Site ID: JUNE 28, 2000

Laboratory ID:

7G292-DUP

Sample Matrix:

Water

Parameter	Analytical Result	Duplicate Result	% Difference
Cadmium, ug/L	6.5	6.7	-3.1%
Copper, ug/L	<10	<10	NA
Iron, ug/L	<20	<20	NA
Lead, ug/L	<0.5	<0.5	NA
Manganese, ug/L	1970	1950	1.0%
Silver, ug/L	0.06	0.06	0.0%
Zinc, ug/L	1410	1420	-0.7%

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS Duplicate analysis

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#126, 127 -- Duplicate

Project ID: RICO

Site ID: JUNE 28, 2000

Laboratory ID:

7G303-DUP

Sample Matrix:

Water

Parameter	Analytical Result	Duplicate Result	% Difference
Cadmium, ug/L	0.14	0.13	7.1%
Copper, ug/L	<10	<10	NA
Iron, ug/L	<20	<20	NA
Lead, ug/L	<0.5	<0.5	NA
Manganese, ug/L	<5	<5	NA
Silver, ug/L	0.14	0.15	-7.1%
Zinc, ug/L	<10	<10	NA

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke, Helena, MT 59601

(406)449-6282

DISSOLVED METALS Duplicate analysis

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: TAG#118, 119 -- Duplicate

Project ID: RICO

Site ID: JUNE 28, 2000

Laboratory ID:

7G319-DUP

Sample Matrix:

Water

Parameter	Analytical Result	Duplicate Result	% Difference	
Cadmium, ug/L	0.70	0.60	14%	
Copper, ug/L	<10	<10	NA	
Iron, ug/L	<20	<20	NA	
Lead, ug/L	<0.5	<0.5	NA	
Manganese, ug/L	443	43 1	2.7%	
Silver, ug/L	<0.02	<0.02	NA	
Zinc, ug/L	160	190	-19%	

Comments:

References:

SW-846, USEPA, 3rd. Edition.

2814 N. Cooke Street, Helena, MT 59601

(406)449-6282

Quality Control Sample

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: QUALITY CONTROL SAMPLE

Project ID: RICO

Site ID: JUNE 28, 2000

Laboratory ID: QC samples

Condition: Intact

	Analytical	True		Method	
Parameter	Result	Value	Range	Reference	
Hardness, mg/L	57	59	52 - 66	EPA 130.2	
Total Dissolved Solids, mg/L	704	700	630 - 770	EPA 160.1	
Total Suspended Solids, mg/L	266	250	225 - 275	EPA 160.2	

Comments:

References:

Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983.

Analyzed by:	
--------------	--

2814 N. Cooke, Helena, MT 59601

(406)449-6282

Client: ESA Consultants, Inc.

Date Reported: 26-Jul-00

Sample ID: DUPLICATE

Project ID: RICO

Site ID: JUNE 28, 2000

Laboratory ID: DUP Condition: Intact

	Analytical	Duplicate	%
Parameter	Result	Result	Difference

Physical Parameters

Hardness, mg/L	994	984	1%
Total Dissolved Solids, mg/L	2577	2644	3%
Total Suspended Solids, mg/L	26	26	0%
	-+		• • • • • • • • • • • • • • • • • • • •

References:

EPA-Methods for Chemical Analysis of Water and Wastes, US EPA, 600/4-79-020, March 1983

APPENDIX B3

Field Quality Control Results

TABLE B3
Field Quality Control Sample Results

Parameter	Units	DR-7	DR-7 Field Duplicate	Duplicate RPD (1)	Field Blank
General Parameters					
Hardness	mg/L as CaCO ₃	148	150	1.3	<1
Total Dissolved Solids	mg/L as TDS	188	200	6.2	24
Total Suspended Solids	mg/L as TSS	<1.0	2.0		1.0
Dissolved Trace Metals		· · · · · · · · · · · · · · · · · · ·			
Cadmium	μg/L as Cd	0.70	0.80	13.3	0.14
Copper	μg/L as Cu	<10	<10		<10
Iron	μg/L as Fe	<20	<20		<20
Lead	μg/L as Pb	<0.5	<0.5		<0.5
Manganese	μg/L as Mn	443	446	0.7	<5.0
Silver	μg/L as Ag	<0.02	<0.02		<0.02
Zinc	μg/L as Zn	160	190	17.1	<10
Total Recoverable Trac	e Metals				
Cadmium	μg/L as Cd				0.13
Соррег	μg/L as Cu				10
lron	μg/L as Fe				<20
Lead	μg/L as Pb				0.60
Manganese	μg/L as Mn				<5.0
Silver	μg/L as Ag				<0.02
Zinc	μg/L as Zn				20
(1) Relative Percen	Difference. Cont	rol Limit, R	PD <= 20		

APPENDIX C

Water Quality Results from October, 1999 Sampling Event

UPPER DOLORES RIVER AND SILVER CREEK BASIN WATER QUALITY MONITORING SUMMARY RICO, COLORADO

Analysis results from samples collected in the Silver Creek Basin on October 25, 1999, are provided in Table C1. Results are presented with Colorado stream standards for Silver Creek below the Town of Rico's water supply intake (Segment 9). For hardness based standards, a hardness value of 135 mg/L as CaCO₃ was used to calculate standard values. This hardness value was measured in sample SC-3 collected from Silver Creek below the Blaine adit discharge.

TABLE C1
Silver Creek Basin Analysis Results

			SC-1	SC-2	SC-3
Parameter	Units	Standard ⁽¹⁾	Silver Ck above Blaine Adit	Blaine Adit	Silver Ck below Blaine Adi
Field Parameters					
Flow	gpm			1.4	
pН	S.U.	6.5 - 9.0	7.69	2.22	7.66
Temperature	°C		5.0	2.6	3.8
Conductivity	μmbos/cm		239	6,890	274
Alkalinity	mg/L as CaCO ₃		96	<10	77
General Parameters				<u> </u>	
Hardness	mg/L as CaCO ₃		100	2,025	135
Total Dissolved Solids	mg/L as TDS		112	11,400	147
Total Suspended Solids	mg/L as TSS		<1.0	13	9.0
Dissolved Trace Metals		_			
Cadmium	μg/L as Cd	13.8/5.0	0.23	2,000	17
Copper	μg/L as Cu	23.5/15.3	<10	50,000	<10
Iron	μg/L as Fe	/1,000	75	1,500,000	1,000
Lead	μg/L as Pb	156/5.95	1.5	99	<0.5
Manganese	μg/L as Mn	/1,000	34	115,000	600
Silver	μg/L as Ag	3.41/0.54	0.07	1.5	0.08
Zinc	μg/L as Zn	/1,100	1,480	489,000	3,250

⁽¹⁾ acute/chronic - Colorado stream standards (dissolved metals) for Silver Creek below the Town of Rico's water supply intake (Segment 9). The hardness value measured at the downstream sampling site SC-3 (135 mg/L as CaCO₃) was used for hardness based standards.

At SC-2, flow from the Blaine adit was measured at 1.4 gallons per minute (Figure 3). The discharge was very acidic with a pH of 2.22 and contained high concentrations of total dissolved solids (11,400 mg/L) and dissolved metals (Table C1).

Comparison of the Silver Creek results at SC-3 with stream standards indicates that the concentration of dissolved cadmium exceeds the acute standard of 13.8 mg/L. In addition, the concentration of dissolved zinc in the grab sample is higher than the chronic standard of 1,100 mg/L. These concentrations of cadmium and zinc, along with the measured concentrations of dissolved iron and manganese, were significantly higher than the range of concentrations measured during VCUP monitoring. During the VCUP monitoring program, measured concentrations of dissolved cadmium and zinc did not exceed acute or chronic standard values at site SC-3. The Blaine adit discharge (SC-2) and Silver Creek flows upstream of the adit (SC-1) were not measured or sampled during VCUP monitoring, so the reason for the change in Silver Creek water quality below the adit is not known.

Samples from the Upper Dolores River Basin were collected on October 24, 1999. Dolores River sample results are presented in Table C2 with stream standards for Section 3. For hardness based standards, a hardness value of 283 mg/L as CaCO₃ was used to calculate standard values. This hardness value was measured in sample DR-7, the Dolores River below the St. Louis tunnel settling pond system. Comparison of the Dolores River results at DR-7 with stream standards indicates that the measured concentrations of dissolved metals do not exceed standard values. These results are consistent with VCUP monitoring results from the Dolores River further downstream.

TABLE C2
Upper Dolores River Analysis Results

			DR-1	DR-2	DR-7
Parameter	Units	Standard ⁽¹⁾	Dolores River above Ponds	Dolores River above Outfall	Dolores River below Ponds
Field Parameters					
рН	s.u.	6.5 - 9.0	8.20	7.86	6.48
Temperature	°C		8.4	5.1	2.5
Conductivity	μmhos/cm		274	407	516
Alkalinity	mg/L as CaCO ₃		82	92	114
General Parameters					
Hardness	mg/L as CaCO ₃		144	181	283
Total Dissolved Solids	mg/L as TDS		154	214	314
Total Suspended Solids	mg/L as TSS		<1.0	<1.0	<1.0
Dissolved Trace Metals					
Cadmium	μg/L as Cd	31,9/2.57	0.26	0.41	2.2
Copper	μg/L as Cu	47.3/28.8	<10_	<10	<10
Iron	μg/L as Fe	/1,000	<20_	54	115
Lead	μg/L as Pb	514/17.0	0.90	0.80	1.0
Manganese	μg/L as Mn	/1,000	100	400	500
Silver	μg/L as Ag	12.2/1.92	0.30	0.39	0.83
Zinc	μg/L as Zn	283/256	<10	<10	130

⁽¹⁾ acute/chronic - Colorado stream standards (dissolved metals) for the Dolores River Segment 3. The hardness value measured at the downstream sampling site DR-7 (283 mg/L as CaCO₃) was used for hardness based standards.

Sample results from the St. Louis tunnel settling pond system are presented in Table C3 with the 30-day average effluent limitations for Outfall 002 (CDPS Permit Number CO-0029793, expired January 31, 1999). Samples were collected at the tunnel discharge (Figure 4), Pond 18 discharge (Figure 5), Pond 11 discharge, and Outfall 002 (Figure 7). Comparison of the total recoverable trace metal results from Outfall 002 with the effluent limitations indicates that concentrations of cadmium, silver, and zinc were greater than 30-day average effluent limitation values. Additional comparison indicates that total recoverable concentrations of cadmium, silver, and zinc in the Pond 18, Pond 11, and St. Louis tunnel discharges were also greater than effluent limitation values.

TABLE C3
St. Louis Tunnel Settling Pond System Analysis Results

	ľ	í i	DR-3	DR-4	DR-5	DR-6
Parameter	Units	Effluent Limitation ⁽¹⁾	Tunnel Discharge	Pond 18 Discharge	Pond 11 Discharge	Outfall 002
Field Parameters						
рН	s.u.	6.5 - 9.0	7.04	8.01	7.82	7.38
Temperature	°C		18.3	16.7	10.0	6.8
Conductivity	μmhos/cm		1,010	1,010	1,030	1,020
Alkalinity	mg/L as CaCO ₃		92	91	80	108
General Parameters					<u> </u>	
Hardness	mg/L as CaCO ₃		490	533	519	710
Total Dissolved Solids	mg/L as TDS		893	913	907	969
Total Suspended Solids	mg/L as TSS		19	11	7.0	3.0
Dissolved Trace Metals						
Cadmium	μg/L as Cd		12	15	15	8.7
Copper	μg/L as Cu		<10	<10	<10	<10
Iron	μg/L as Fe		3,000	<20	<20	70
Lead	μg/L as Pb		1.4	0.60	<0.5	0.90
Manganese	μg/L as Mn		2,200	2,000	2,000	1,700
Silver	μg/L as Ag		0.08	0.03	0.25	0.27
Zinc	μg/L as Zn		6,650	4,100	3,390	2,990
Total Recoverable Trace	Metals					
Cadmium	μg/L as Cd	/0.4	14	20	14	9.6
Copper	μg/L as Cu	<i>1</i> 24	<10	<10	<10	<10
Iron	μg/L as Fe		9,000	4,000	1,000	1,000
Lead	μg/L as Pb	/9.9	3.1	5.4	2.4	4.4
Manganese	μg/L as Mn	 	2,200	2,100	2,000	1,700
Silver	μg/L as Ag	/0.1	0.14	0.32	0.47	0.38
Zinc	μg/L as Zn	/237	6,870	5,450	4,020	2,970

⁽¹⁾ daily maximum/30-day average - St. Louis Tunnel Outfall 002 Effluent Limitations (CDPS Permit Number CO-0029793, expired January 31, 1999)